
Institute for System Programming of the Russian Academy of Sciences

Linux Driver Verification
Program

 Alexey Khoroshilov
khoroshilov@linuxtesting.org

Yet another static analysis tool?

● sparse
● Coccinelle

Static Analysis

Key characteristics
• Scope of analysis (kind of bugs)
• False positives (false bugs reported)
• False negatives (real bugs missed)
• Resources required for analysis

Static Analysis:
Trade-Off Triangle

False positives

False negativesTime of analysis

Static Analysis:
Trade-Off Triangle

False positives

False negativeTime of analysis

light-weight heavy-weight

Coccinelle

● Intra-procedural analysis
● Limited data-flow analysis

The simplest rule

mutex
● should not be locked twice
● should not be unlocked if it is not locked

drivers/usb/gadget/inode.c

drivers/usb/gadget/inode.c

drivers/usb/gadget/inode.c

drivers/usb/gadget/inode.c

Coccinelle

● Intra-procedural analysis
● Limited data-flow analysis

drivers/scsi/mpt2sas/mpt2sas_ctl.c

618 /**

619 * _ctl_do_mpt_command - main handler for MPT2COMMAND opcode

623 * @state - NON_BLOCKING or BLOCKING

624 */

625 static long

626 _ctl_do_mpt_command(...) {

...

650 if (state == NON_BLOCKING && !mutex_trylock(&ioc->ctl_cmds.mutex))

651 return -EAGAIN;

652 else if (mutex_lock_interruptible(&ioc->ctl_cmds.mutex))

653 return -ERESTARTSYS;

654

drivers/scsi/mpt2sas/mpt2sas_ctl.c

Heavy-Weight Analysis

Based on picture from http://engineer.org.in

How it works?

● CEGAR - Counter-Example Guided

Abstraction Refinement

CEGAR

4. Model
refinement

1. Abstraction

3. Error trace
analysis

2. Checking
of boolean
program

 SAFE

 UNSAFE

program
 in C

There is a path
to error state

 trace

The path
is unfeasible

The path
is feasible

boolean
program

new
predicates

CEGAR-based Heavy-Weight Tools
Commercial:
• Microsoft SDV

Academic:
• BLAST
• CPAChecker

(U. Passau)
• SATABS (U. Oxford)
• ARMC (U. Munich)

Microsoft Static Driver Verifier
We've created a number of things to do rich static analysis. We actually went out and
bought for a little over $30 million a company that was in the business of building
those kinds of tools, and we said now we want you to focus on applying these tools to
large-scale software systems, the kind of system we have in the source code of
Windows or Office, and see how far we can get on this.
…...
We call the system that does this kind of proof, it's a model-checking system. You
describe the constraints, including things as simple as nobody should acquire the lock if
they've already acquired it, nobody should release it if they haven't acquired it, certain
things about the multi-threading aspect of the code that you want to make sure work very
well. And you describe those things literally, in this case in the C code itself, and then the
analyzer goes through and reduces the program, takes away anything that doesn't affect
the path analysis that it's trying to go through to determine is there some path through the
program that violates the constraints.

The initial domain we applied this in was in device drivers.

Bill Gates at
17th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages and Application, 2002

• Included into Microsoft Windows Driver
Developer Kit (DDK) in 2006

• Continuous improvements:
– Kinds of interfaces:

WDM (2006) → WDM, NDIS, KMDF (2010)
– Number of rules:

43 (2006) → 200 (2010)
– Time required to analyze one driver:

???→ 2-3 hours (2010)

Microsoft Static Driver Verifier

Results
• 33 critical bugs in the WDK sample drivers
• 53 critical bugs in kernel-mode drivers

Microsoft Static Driver Verifier

CEGAR-based Heavy-Weight Tools
Commercial:
• Microsoft SDV

Academic:
• BLAST
• CPAChecker

(U. Passau)
• SATABS (U. Oxford)
• ARMC (U. Munich)

Yet another static analysis tool?

Linux Driver Verification Program

● Yes, our idea is to promote heavy-weight
verification tools

● But our idea is NOT to push a particular
verification technique

LDV Goals

● Provide infrastructure for application of
verification tools to Linux device drivers

● Research new verification approaches in
the industrial settings

● Improve quality of the Linux device drivers
● Provide a basis for education of young

researches

Where we are

● Static analysis infrastructure

Verification Tools World

int main(int argc,char* argv[])
{

 ...

 other_func(var);

 ...

}

void other_func(int v)
{
 ...
 assert(x != NULL);
}

Device Driver World

No explicit calls to
linking-level init procedures

Callback interface
procedures registration

module_init(DAC960_init_module);
module_exit(DAC960_cleanup_module);

ret = pci_register_driver(&DAC960_pci_driver)

Rule Instrumentor
mutex x;
int f(int y)
{
 lock(x);
 ...
 unlock(x);
 return y;
}

int x_locked = 0;
int f(int y)
{
 assert(x_locked == 0);
 x_locked = 1;
 ...
 assert(x_locked == 1);
 x_locked = 0;
 return y;
}

Where we are

● Static analysis infrastructure
● Cluster framework
● Front-ends

● ldv-manager
● ldv-git
● ldv-online

ldv-online

ldv-online (2)

Where we are

● Static analysis infrastructure
● Cluster framework
● Front-ends

● ldv-manager
● ldv-git
● ldv-online

● Results database
● Error trace visualizer
● Knowledge base
● Comparison framework

Error Trace Visualizer

Knowledge Base

Bugs Found http://linuxtesting.org/results/ldv
● 42 patches already applied

http://linuxtesting.org/results/ldv

Where we are

but there is no magic
● Verification tools

● issues with pointer analysis, container_of,
functional_pointers, complex data structures

● Environment generator
● issues with inaccurate environment model in

some cases
● RuleDB

● only 5 rules formalized and debugged

Where we are going

● Improve verification tools
● Formalize new rules
● Continuous application of the tools to Linux

device drivers
● Integrate new verification tools

What we are looking for

● Prioritization of rules
● Identification of new rules
● Industrial partners
● Computational power

Conlusions

● Heavy-weight verification is useful in
practice

● LDV infrastructure is ready for research and
industrial usage

● Number of supported rules must be
increased

● Help on rules prioritization and identification
are welcome

Institute for System Programming of the Russian Academy of Sciences

Thank you!

Alexey Khoroshilov
khoroshilov@linuxtesting.org
http://linuxtesting.org/project/ldv

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Real World Example
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

