
Using Dynamic Analysis
to Hunt Down Problems
in Kernel Modules

Eugene A. Shatokhin

Institute for System Programming of Russian Academy of Sciences
(ISPRAS)

http://www.ispras.ru/en/

LinuxCon Europe, October 26-28, 2011 2/18

Loadable Kernel Modules (LKMs)

Kernel Modules in Linux:
 Device drivers
 File systems
 Networking stack and firewalls
 ... and much more (virtualization, RPC, ...)

Kernel 3.0-rc1 – 3.1-rc5: more than 1200 errors fixed.
Among these are:
 more than 100 concurrency-related errors (race conditions,
deadlocks)
 more than 90 memory leaks
 more than 60 problems in "error path" (incorrect handling of rarely
occuring situations)

LinuxCon Europe, October 26-28, 2011 3/18

Digression: Detecting Errors in Kernel Modules
for Microsoft Windows

Certification of kernel modules:
 Driver Verifier
 Device Fundamental Tests
 Class-specific Tests

Development of kernel modules:
 all of the above
 Windows - checked build
 PreFAST for Drivers (PFD)
 Static Driver Verifier (SDV)

Details: Microsoft Windows Logo Program
http://msdn.microsoft.com/library/windows/hardware/gg463010

LinuxCon Europe, October 26-28, 2011 4/18

Runtime analysis of the kernel modules chosen by the user:
 verification of operations with kernel objects and handles, etc.
 simulation of low memory conditions and of other "uncommon"
situations
 detection of memory leaks, double free, "use-after-free" errors, etc.
 … and much more

Main usage areas:
 driver development: testing, debugging, ...
 certification of kernel-mode software: checking basic requirements
 technical support: analysis of failures on the users' systems

N.B. Driver Verifier itself does not make requests to the target driver.

Digression: Driver Verifier for Microsoft Windows
Recommended for development and testing, required for certification.
The first version - in Windows 2000; continuously enhanced since then.

LinuxCon Europe, October 26-28, 2011 5/18

Automated dynamic analysis of kernel modules in Linux:
 Systemtap, LTTng, Ftrace
 Kmemcheck, Kmemleak, Fault Injection framework, ...
 Mmiotrace (for Nouveau graphics drivers, etc.)
 User Mode Linux + (Valgrind, GDB, …)
 "API Swapping" ("Imposter") facilities from Novell YES Tools
 KEDR framework (ISPRAS)
 ...

 Static analysis: source or binary code is analyzed without execution.
 Dynamic analysis: runtime, post factum on a trace, etc. The code
under analysis is executed.

Kernel Modules: Analysis Tools

LinuxCon Europe, October 26-28, 2011 6/18

Novell YES Tools: "API Swapping"

Analysis of kernel modules chosen by the user:
 detection of memory leaks of several kinds
 detection of "write-past-end" and "write-before-begin" errors
 simulation of memory allocation failures (kmalloc() only, hard-coded scenarios)

Details:
Novell YES Certified Program: http://developer.novell.com/devnet/yes/
Test Tools: http://www.novell.com/developer/ndk/storage_test_tools.html

Implementation:
Interception (replacement) of function calls: about 80 functions.
Instrumentation: changing names of imported functions in the object file.
Supported architectures: x86 (32- and 64-bit), IA64, PPC (32- and 64-bit)

Used only as a part of the certification test suites, not a standalone product.
Last updated in 2007 (?).

LinuxCon Europe, October 26-28, 2011 7/18

KEDR Framework
KEDR: KErnel-mode Drivers in Runtime
Developed since April 2010, version 0.3 — June 17, 2011.
License: GPL v.2

Features:
 memory leak detection
 fault simulation using customizable scenarios ("what to make fail when")
 call monitoring (call tracing)
 interface for creating custom analysis tools

Details:
KEDR project site: http://code.google.com/p/kedr/

Implementation:
Interception (replacement) of function calls: about 75 functions.
Supported architectures: x86 (32- and 64-bit).

Relies on several in-kernel facilities: x86 instruction decoder (from KProbes),
notification system, ring buffer implementation, …

LinuxCon Europe, October 26-28, 2011 8/18

KEDR Framework:
Call Replacement

"Target" function:
void *__kmalloc(size_t size, gfp_t flags);

"Replacement" function:
void *repl___kmalloc(size_t size, gfp_t flags)
{

void *result;
if (do_fault_simulation("__kmalloc", size, flags))

result = NULL;
else

result = __kmalloc(size, flags);
return result;

}

In the memory image of the module:
e8 bc 33 f1 c7
call __kmalloc

e8 2c 26 02 00
call repl___kmalloc

LinuxCon Europe, October 26-28, 2011 9/18

KEDR Tool = KEDR Core + Plugin(s)

LinuxCon Europe, October 26-28, 2011 10/18

Function calls being processed:
 SLAB allocs / frees: __kmalloc*(), kfree(), kmem_cache_alloc*(), ...
 Page allocs / frees: alloc_pages*(), free_pages(), ...
 vmalloc / vfree family
 Other exported functions calling the ones above: kstrdup(),
posix_acl_alloc(), ...

Usage with the test suites and benchmarks:
 Autotest
 Linux Test Project
 Phoronix Suite
 ...
Other information:
Integration with Autotest: http://code.google.com/p/kedr/wiki/HowTo_Autotest_Basics
Comparison with Kmemleak: http://code.google.com/p/kedr/wiki/KEDR_And_Kmemleak

KEDR Framework:
Memory Leak Detection (LeakCheck)

LinuxCon Europe, October 26-28, 2011 11/18

Block at 0xf659a000, size: 4096;
stack trace of the allocation:
[<fe2ab904>] sf_follow_link+0x34/0xa0 [vboxsf]
[<c0303caf>] link_path_walk+0x79f/0x910
[<c0303f19>] path_walk+0x49/0xb0
[<c0304089>] do_path_lookup+0x59/0x90
[<c03042bd>] user_path_at+0x3d/0x80
[<c02f8825>] sys_chdir+0x25/0x90
[<c0203190>] sysenter_do_call+0x12/0x22
[<ffffe430>] 0xffffe430
[<ffffffff>] 0xffffffff
+8 more allocation(s) with the same call stack.

VirtualBox Guest Additions 4.0.2,
from the report generated by LeakCheck:

KEDR Framework:
Analysis of Real-World Kernel Modules

LinuxCon Europe, October 26-28, 2011 12/18

VirtualBox Guest Additions 4.0.2, file lnkops.c:
static void *
sf_follow_link(struct dentry *dentry, struct nameidata *nd)
{
<...>
 int error = -ENOMEM;
 unsigned long page = get_zeroed_page(GFP_KERNEL);
 if (page) {
 error = 0;
 rc = vboxReadLink(&client_handle,
 &sf_g->map, sf_i->path, PATH_MAX, (char *)page);
 if (RT_FAILURE(rc)) {
 LogFunc(("vboxReadLink failed <...>"));
 error = -EPROTO;
 }
 }
 nd_set_link(nd, error ? ERR_PTR(error) : (char *)page);
 return NULL;
}

KEDR Framework:
Analysis of Real-World Kernel Modules

LinuxCon Europe, October 26-28, 2011 13/18

Affected operations: memory allocation, copy_*_user(), capable(), ...

Scenarios (key features):
 can be changed in runtime (via writing to files in debugfs)
 control expressions:
 "!in_init && size > 224 && flags != GFP_ATOMIC"

 "cap == CAP_SYS_ADMIN || cap == CAP_SYS_RAWIO"
 ...
 support for random failures (rnd100 and rnd10000 parameters)
 restriction by call site address (caller_address parameter)
 restriction by process ID

KEDR Framework: Fault Simulation
Simulation of failures and other "uncommon" conditions

Other information: Comparison with Fault Injection framework:
http://code.google.com/p/kedr/wiki/KEDR_And_Fault_Injection

LinuxCon Europe, October 26-28, 2011 14/18

KEDR Framework: Results

Errors detected by KEDR tools:
 EXT4 FS - use-after-free and invalid free due to the problems in
error handling
 FAT FS - kernel oops in low memory conditions
 Ath5k (wireless networking) - 3 memory leaks
N.B. 2 of these were found by KEDR working with Autotest on
Chromium OS
 VirtualBox Guest Additions - 3 memory leaks

Details:
http://code.google.com/p/kedr/wiki/Problems_Found

All these errors are now confirmed and fixed by the maintainers.

Other projects KEDR was applied to: Open-MX, KNEM (INRIA)

LinuxCon Europe, October 26-28, 2011 15/18

Advantages:
 Source code of the analyzed module is not needed; KEDR can be used to
analyze closed-source modules too
 Extensibility
 Work "out-of-the-box" on many modern Linux-based systems
 Low requirements on system resources

Limitations and drawbacks:
 Analysis at the level of binary code => macros and inlines are "invisible"
(+ kernel ABI is even more unstable than API)
 Analysis of function calls only; only the calls directly made by the given
module are processed
 Analysis of only one module at a time
 For the present, only x86 and x86-64

KEDR Framework:
Advantages and Limitations

LinuxCon Europe, October 26-28, 2011 16/18

Medium priority:
 Making memory leak detector more accurate with the help of tracking
callback operations

 Support for fault simulation for disk I/O

 Support for analysis of several modules at once

 Opportunities to work with OpenQA

 Revisiting KEDR to improve its portability (eventually - support for ARM,
etc.)

KEDR Framework: Future Directions

High priority:
 Support for tracking memory read and write operations; working with
offline data race detectors like ThreadSanitizer (Google)
 Enhanced integration with Autotest (more groups of tests to cover)

LinuxCon Europe, October 26-28, 2011 17/18

 KEDR-COI — tracking the calls to callback operations (file
operations, inode operations, fault handlers, ...).
http://code.google.com/p/kedr-callback-operations-interception/
Status: beta

 Kernel Strider — tracking memory read/write operations in
addition to function calls + preparing data for offline data race
detectors (ThreadSanitizer, ...).
The project is supported by a Google Research Award (2011):
"Instrumentation and Data Collection Framework for Dynamic Data Race

Detection in Linux Kernel Modules"
http://code.google.com/p/kernel-strider/
Status: pre-alpha / prototyping

KEDR Framework:
Our Related Projects

LinuxCon Europe, October 26-28, 2011 18/18

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

