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Invention:   “Model Checking”
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- timeout
- out of memory
- crash of component
- operand exception

Enormous amounts of resources wasted!
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Unsound (overflow)
- false negatives
  (missed bugs = disaster)

Incomplete (non-linear operations)
- false positives
  (false alarms = noise)



Conditional Model Checking



Conditional Model Checking
  Program
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SAFE under Condition Φ

Examples: - Φ = true: previous SAFE
                 - Φ = false: previous UNSAFE
                     - general: condition for safety



Conditional Model Checking

C program
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Checker
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Condition Φ
0

Directs the analysis
to parts to analyze

Examples: - Φ = true: previous SAFE
                 - Φ = false: previous UNSAFE
                     - general: condition for safety



Conditional Model Checking

• Never crash!

→ I Condition: specify time and memory
• Always dump results!

→ O Condition: report partial results
• Sequential composition

→ Solve harder problems
• Comparison of Checkers:

→ Winner is who has Weakest Condition!
     (i.e., has proved “most”)



Input Conditions

Two main use cases for input conditions

A) Use conditions for restricting the search
     (similar to bounded model checking)

B) Use output of another model checker



Quantitative Input Conditions



Input Condition: Path Length



Input Condition: Path Length
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Predicate Analysis not Effective



Output Condition after Predicate

r >= x not proved
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- More Robust
- Better Precision
- Improved Performance
- More Flexible (combinations of binaries)





Towards a 
Unifying Framework 

...



  

CPAchecker – History

• 2003 – 2008   BLAST       (UC Berkeley)
Last version 2.5 released in 2008
by B, Jhala, Majumdar, Henzinger

• 2008 – 2012   CPAchecker  (SFU, Passau)

• Complete reimplementation of BLAST
- New, more flexible architecture
- More efficient algorithms



CPAchecker – Framework

• Software model checker

• Open source (Apache 2), written in Java

• Follows strictly the concept of
Configurable Program Analysis 
[CAV'07, ASE'08]

• Input language: C



CPAchecker – Features
• Integrated most successful SMC ideas:

– Predicate analysis (1997)
– CEGAR (2000)
– Lazy abstraction (2002)
– Interpolation for predicate discovery (2004)
– Configurable program analysis (2007)
– Large block-encoding (2009)

• Strongest domain:
Predicate Analysis (faster than BLAST)













  

Coming Soon

• Competition in Software Verification
at TACAS 2013    (March 2013)
http://sv-comp.sosy-lab.org

• Distributed Model Checking
→ Model Checking in the Cloud



  

Summary

• Conditional Model Checking
→ Resource-aware (green)
→ Terminates with Useful Results
→ Effective Sequential Composition
→ Unified View on Existing Approaches

• CPAchecker – Verification Framework
→ Designed for Extension & Plug-in
→ One of the Most Efficient 
     Software Model Checkers



Additional Material



Adjustable-Block Encoding



Abstract Successors
Abstract state:   ( Φ, ψ )

   Φ: Strongest Post      ψ: Abstract Formula



Abstract Successors
Abstract state:   ( Φ, ψ )

   Φ: Strongest Post      ψ: Abstract Formula

Example:

Precision: { x > 0 }

Current abstract state: ( true, x > 0 )

CFA edge:  x := 1

Successor abstract state: ( x = 1, x > 0 )

After predicate abstraction: ( true, x > 0 )





Adjustable-Block Encoding

• Boolean Abstraction (not Cartesian)

• Arbitrary Block Size

• We can use more power of SMT
SMT Fans: Attention!

• Disjunctions not handled explicitly
ART not forced to grow exponentially

• Reduced number of abstractions

• Reduced number of refinements





  

CPAchecker - Summary

• Unification of several approaches
→  reduced to their essential properties

• Allow experimentation with new 
configurations that we would never think of

• Flexible implementation as framework



  

http://cpachecker.sosy-lab.org
Dirk Beyer (Uni Passau)

Gregor Endler (Uni Passau)

Alberto Griggio (Uni Trento)

Andreas Holzer (TU Wien)

Erkan Keremoglu (SFU)

Stefan Löwe (Uni Passau)

Alexander v. Rhein (Uni Passau)

Michael Tautschnig (Oxford Uni)

Gregory Theoduloz (EPFL)

Philipp Wendler (Uni Passau)

Daniel Wonisch (Uni Paderborn)



CPAchecker
Architecture and Flow



CPAchecker  -  Design
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Future: Powerful Parameters ...

SBE LBE BMC

SAT check
after

error error threshold

Abstraction
after

1 func/loop never

Unroll 
loops

no no yes

Inline 
functions

no no yes

Merge never non-
abstraction

always



Future: Powerful Parameters ...

SBE LBE McMillan BMC

SAT check
after

error error every threshold

Abstraction
after

1 func/loop never never

Unroll 
loops

no no yes yes

Inline 
functions

no no yes yes

Merge never non-
abstraction

never always
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