
Conditional
Model Checking

Dirk Beyer

Joint work with Tom Henzinger, Erkan Keremoglu, Philipp Wendler

Model Checking
 Program + Property

Model
Checker

SAFE UNSAFE

ACM Turing Award 2007

Edmund Clarke

Allen Emmerson

Joseph Sifakis

Invention: “Model Checking”

Classic Model Checking
 Program

Model
Checker

SAFE UNSAFE

Classic Model Checking
 Program

Model
Checker

SAFE UNSAFE

FAILURE

Classic Model Checking
 Program

Model
Checker

FAILURE

- timeout
- out of memory
- crash of component
- operand exception

Enormous amounts of resources wasted!

Classic Model Checking
 Program

Model
Checker

SAFE UNSAFE

FAILURE

Unsound (overflow)
- false negatives
 (missed bugs = disaster)

Incomplete (non-linear operations)
- false positives
 (false alarms = noise)

Conditional Model Checking

Conditional Model Checking
 Program

Model
Checker

SAFE under Condition Φ

Examples: - Φ = true: previous SAFE
 - Φ = false: previous UNSAFE
 - general: condition for safety

Conditional Model Checking

C program

Model
Checker

Condition Φ
1

Condition Φ
0

Directs the analysis
to parts to analyze

Examples: - Φ = true: previous SAFE
 - Φ = false: previous UNSAFE
 - general: condition for safety

Conditional Model Checking

• Never crash!

→ I Condition: specify time and memory
• Always dump results!

→ O Condition: report partial results
• Sequential composition

→ Solve harder problems
• Comparison of Checkers:

→ Winner is who has Weakest Condition!
 (i.e., has proved “most”)

Input Conditions

Two main use cases for input conditions

A) Use conditions for restricting the search
 (similar to bounded model checking)

B) Use output of another model checker

Quantitative Input Conditions

Input Condition: Path Length

Input Condition: Path Length

Experiment:
Sequential Composition

BMC

Explicit

Predicate

Φ
0

Φ
1

Φ
2

Φ
3

Predicate Analysis not Effective

Output Condition after Predicate

r >= x not proved

Sequential Composition

BMC

Explicit

Predicate

Φ
0

Φ
1

Φ
2

Φ
3

- More Robust
- Better Precision
- Improved Performance
- More Flexible (combinations of binaries)

Towards a
Unifying Framework

...

CPAchecker – History

• 2003 – 2008 BLAST (UC Berkeley)
Last version 2.5 released in 2008
by B, Jhala, Majumdar, Henzinger

• 2008 – 2012 CPAchecker (SFU, Passau)

• Complete reimplementation of BLAST
- New, more flexible architecture
- More efficient algorithms

CPAchecker – Framework

• Software model checker

• Open source (Apache 2), written in Java

• Follows strictly the concept of
Configurable Program Analysis
[CAV'07, ASE'08]

• Input language: C

CPAchecker – Features
• Integrated most successful SMC ideas:

– Predicate analysis (1997)
– CEGAR (2000)
– Lazy abstraction (2002)
– Interpolation for predicate discovery (2004)
– Configurable program analysis (2007)
– Large block-encoding (2009)

• Strongest domain:
Predicate Analysis (faster than BLAST)

Coming Soon

• Competition in Software Verification
at TACAS 2013 (March 2013)
http://sv-comp.sosy-lab.org

• Distributed Model Checking
→ Model Checking in the Cloud

Summary

• Conditional Model Checking
→ Resource-aware (green)
→ Terminates with Useful Results
→ Effective Sequential Composition
→ Unified View on Existing Approaches

• CPAchecker – Verification Framework
→ Designed for Extension & Plug-in
→ One of the Most Efficient
 Software Model Checkers

Additional Material

Adjustable-Block Encoding

Abstract Successors
Abstract state: (Φ, ψ)

 Φ: Strongest Post ψ: Abstract Formula

Abstract Successors
Abstract state: (Φ, ψ)

 Φ: Strongest Post ψ: Abstract Formula

Example:

Precision: { x > 0 }

Current abstract state: (true, x > 0)

CFA edge: x := 1

Successor abstract state: (x = 1, x > 0)

After predicate abstraction: (true, x > 0)

Adjustable-Block Encoding

• Boolean Abstraction (not Cartesian)

• Arbitrary Block Size

• We can use more power of SMT
SMT Fans: Attention!

• Disjunctions not handled explicitly
ART not forced to grow exponentially

• Reduced number of abstractions

• Reduced number of refinements

CPAchecker - Summary

• Unification of several approaches
→ reduced to their essential properties

• Allow experimentation with new
configurations that we would never think of

• Flexible implementation as framework

http://cpachecker.sosy-lab.org
Dirk Beyer (Uni Passau)

Gregor Endler (Uni Passau)

Alberto Griggio (Uni Trento)

Andreas Holzer (TU Wien)

Erkan Keremoglu (SFU)

Stefan Löwe (Uni Passau)

Alexander v. Rhein (Uni Passau)

Michael Tautschnig (Oxford Uni)

Gregory Theoduloz (EPFL)

Philipp Wendler (Uni Passau)

Daniel Wonisch (Uni Paderborn)

CPAchecker
Architecture and Flow

CPAchecker - Design

Future: Powerful Parameters ...

SBE LBE

SAT check
after

error error

Abstraction
after

1 func/loop

Unroll
loops

no no

Inline
functions

no no

Merge never non-
abstraction

Future: Powerful Parameters ...

SBE LBE BMC

SAT check
after

error error threshold

Abstraction
after

1 func/loop never

Unroll
loops

no no yes

Inline
functions

no no yes

Merge never non-
abstraction

always

Future: Powerful Parameters ...

SBE LBE McMillan BMC

SAT check
after

error error every threshold

Abstraction
after

1 func/loop never never

Unroll
loops

no no yes yes

Inline
functions

no no yes yes

Merge never non-
abstraction

never always

	Slide 1
	Slide 2
	Slide 3
	ACM Turing Award 2008
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

