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Abstract. We examine a Linux device driver used on IBM mainframes
and focus on the misuse of unsigned integers. First, we develop a special-
purpose tool which analyzes the parse-tree of the source code. It reports
easy cases of misuses immediately, and otherwise annotates the source
code with suitable assertions. In a second step, we try to solve the hard
cases by proving or disproving these assertions with CBMC. We found
27 errors in this device driver which were not known before.

1 Introduction

Since a large number of operating sys-
tem crashes are due to device driver er-
rors [1], Microsoft initiated the SLAM
project and produced the tool set
“Static Driver Verifier” (SDV) [2]. To
remain competitive, the Linux commu-
nity must come up with similar tools
to support their developers. One ef-
fort in this direction was Avinux, devel-
oped by Post et al. [3, 4]. Avinux checks
thousands of Linux device drivers for
the absence of certain kinds of errors.
Another recent effort is LDV [6] by the
Russian Academy of Sciences.

Here, we analyze the (mis-)use of
unsigned integers in the EHCA Linux
device driver. EHCA is an IBM spe-
cific implementation of the Infiniband
switched fabric communications link
used on IBM’s Z-series mainframes.
Similar to [3], our verification builds on
CBMC [5], a bounded model checker

for the C language, but alternatives
such as LLBMC by Sinz et al. [7] could
be used instead.

For any assignment u=f(x) to an
unsigned integer variable u, one must
assure that f(x) only returns non-
negative values. But in our analysis we
found situations in which this was not
always true in the EHCA code (and
other code surrounding this module).
Several errors of this kind were al-
ready fixed in the months prior to our
work in 2010 (cf. the EHCA patches),
but apparently not all occurrences were
found. Our tool systematically detects
errors of this kind at compile time and
thus helps developers produce more re-
liable code.

2 Unsigned Integers

The C language provides several un-
signed integer types such as unsigned



char, unsigned short, unsigned int

and unsigned long. Since exact value
ranges of those types are architecture
dependent they are usually not used in
Linux kernel code. Instead the Linux
kernel defines its own unsigned integer
types u8, u16, u32 and u64 with archi-
tecture independent sizes.

The type of misuse we consider in
this paper boils down to type viola-
tions, as in u32 u = -1;. At first this
seems an obvious error which should
occur rarely. But as recent patches of
the Linux kernel and ou results show
this happens quite frequently, and in
some special cases nothing goes wrong.
Consider the following program:

int main() {

u32 u = -1;

if (u == -1) printf("yes");

else printf("no");}

The output will be yes and this is ex-
actly what should happen. There will
be no warnings from the compiler (at
least without special compiler options)
and also the execution of the program
will work absolutely fine. Now consider
a slight variation with type u8 for u:

int main() {

u8 u = -1;

if (u == -1) printf("yes");

else printf("no");}

Now the output will be no.
Hence even simple cases like this

are tricky because the semantics of the
program may depend on compiler opti-
mizations or it may depend on the bit-
size of the processor (in our case caus-
ing extensions by leading zeroes).

So our conclusion is: It is always an
error to assign a negative value to a
variable of an unsigned integer type,
despite the fact that it may work in
some cases.

3 Annotation

We have to prove that no variable of
unsigned integer type will ever be as-
signed a negative value. This means we
have to look at every relevant assign-
ment and insert a correctness assertion.
In practice, this needs automation and
is best done in a style that resembles
Aspect Oriented Programming (AOP).
From the AOP point of view we rep-
resent our crosscutting concern of ver-
ification by adding assertions at join
points in the program.

If the value assigned is a constant n,
we have an easy case which is an error
if n<0. In general, however, we need to
prove an assertion. We add the asser-
tions as follows, carefully avoiding any
side-effects of a second call to f(x):

{typeof(f(x)) t; u=t=f(x);\\

assert(t >=0);}

To make sure the line numbers remain
unchanged we place all the annotations
in the same line as the assignment we
annotate. Later we will try to prove
these assertions with CBMC.

Unfortunately, we did not find a
suitable reliable AOP tool for our pur-
pose. We developed our own tool An-
notator which walks the parse-tree
and inserts the assertions automati-
cally. Annotator also immediately
reports the easy cases of misuses such
as u = n, u < 0, u == n which any
compiler might detect. For example u

< 0 only makes sense if it is possible
that u has a negative value (or else it
may be a dirty short-cut to check for
the most significant bit). So something
looks suspicious and Annotator will
report this.



4 Results

Our verification process consisted of
the following steps:

1. Annotate the source code with as-
sertions and search for obvious er-
rors (done by Annotator).

2. Do some necessary steps of pre-
processing to expand makros and
include directives (done by some
special scripts, the kernel makefile
and the GCC)

3. Try to prove or disprove the asser-
tions with CBMC.

We applied those steps on the EHCA
device driver in Linux kernel version
2.6.35.2. During Step 1 Annotator
found 16 easy problem cases. Three er-
rors were of type u = n in line 1279 of
file include/linux/mm.h, line 145 of
ehca irq.c, and line 783 of hcp if.c.
In line 235 of ehca cq.c it found u <

0. Twelve errors of type u == n were
found in line 358 of ehca cq.c, lines
155 and 721 of ehca irq.c, and in
hcp if.c in lines 251, 289, 364, 559,
595, 603, 638, 660, and 669.

More interesting errors were found
in Step 3 with CBMC. To (dis-)prove
the assertions in a normal program,
CBMC traverses the whole program,
beginning with the main function.
However, a device driver is not one con-
tiguous piece of software with one main
entry function, but a collection of func-
tions, each providing a special func-
tionality needed by the kernel to con-
trol a hardware device (e.g. triggered
by an interrupt). Therefore one has to
call CBMC separately for each func-
tion provided by the device driver to
the Linux kernel. In the EHCA driver
we identified 47 such functions.

In 3 cases CBMC aborted due to
an internal error. In 5 cases we aborted
the execution of CBMC because it took

more than three hours. In the remain-
ing 39 cases we got a result. In 31 cases
CBMC proved all the assertions. In 8
cases CBMC disproved an assertion.

CBMC disproves at most one as-
sertion per run. So to find all the as-
sertions that can fail we repeatedly re-
moved the assertions disproved so far
and called CBMC again. All in all we
found eleven errors with CBMC. These
were in file hcp if.c (on lines 386,
534, 557, 594, 601, 697, 866, 886), in
ehca uverbs.c (on lines 272, 294), and
on line 808 of ehca mrmw.c.

In many cases the verification pro-
cess with CBMC is very quick. In 37
out of 44 cases CBMC needed less than
20 seconds to prove all the assertions or
to disprove one assertion.
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