
Institute for System Programming of the Russian Academy of Sciences

Verification of
Operating Systems

 Alexey Khoroshilov
khoroshilov@ispras.ru

SYRCoSE-2016
Krasnovidovo, Moscow Region

30 May 2016

Operating Systems

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

Embedded Operating Systems

Kernel (mmu,scheduler,ipc)

ArchLib BSP Drivers

Drivers

System
Services

libSYSTEMlibPOSIXlibARINC

POSIX
App

APEX
App

System Services

Build System Configuration
Host System

Target System

User-Space

Kernel-Space

Hardware

Operating System

System Calls System Calls

Interrupts, DMA IO Memory / IO Ports

Static Verification Runtime Verification

Static Verification Runtime Verification

+ All paths at once – One path only

Static Verification Runtime Verification

+ All paths at once – One path only

+ Hardware, test data and
test environment is not
required

– Hardware, test data and
test environment is
required

Static Verification Runtime Verification

+ All paths at once – One path only

+ Hardware, test data and
test environment is not
required

– Hardware, test data and
test environment is
required

– There are false positives + Almost no false positives

Static Verification Runtime Verification

+ All paths at once – One path only

+ Hardware, test data and
test environment is not
required

– Hardware, test data and
test environment is
required

– There are false positives + Almost no false positives

– Checks for predefined
set of bugs only

+ The only way to show
the code actually works

Verification Approaches

One

test1 kind
bugs

all kinds
of bugs

in all executionsin 1 execution

Operating Systems

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

void test_memcpy(void)
{
 char *dst, *src;
 char *res;

 dst = malloc(16);
 assert(dst != NULL, "not enough memory");

 src = "0123465789";
 res = memcpy(dst, src, 10);
 assert(res == dst, "memcpy returns incorrect pointer %p, "
 "while %p is expected", res, dst);
 assert(memcmp(src, dst, 10) == 0, "wrong result of copying");

 free(dst);
}

Functional Testing

Verification Approaches

High quality

 test suite

One

test1 kind
bugs

all kinds
of bugs

in all executionsin 1 execution

Institute for System Programming of the Russian Academy of Sciences

T2C – Template2C

Requirements Catalogue

Requirements Catalogue:Requality

<CODE>
 char *res, *buffer = NULL;

 buffer = malloc(200);
 if (buffer == NULL) ABORT_TEST_PURPOSE("Not enough memory");

 // If copying takes place between objects that overlap, the behavior is undefined.
 REQ("app.memcpy.02", "", !are_buffers_overlapped(buffer+S1,buffer+S2,N));

 res = memcpy(buffer, buffer + 100, 100);

 // The memcpy() function shall copy n bytes from the object pointed to by s2
 // into the object pointed to by s1.
 REQ("memcpy.01", "", buffer_compare(buffer, buffer + 100, 100) == 0);

 // The memcpy() function shall return s1
 REQ("memcpy.03", "", res == buffer);

 if (buffer != NULL) free(buffer);
</CODE>

T2C test for memcpy

<CODE>
 char *res, *buffer = NULL;

 buffer = malloc(200);
 if (buffer == NULL) ABORT_TEST_PURPOSE("Not enough memory");

 // If copying takes place between objects that overlap, the behavior is undefined.
 REQ("app.memcpy.02", "", !are_buffers_overlapped(buffer+S1,buffer+S2,N));

 res = memcpy(buffer, buffer + 100, 100);

 // The memcpy() function shall copy n bytes from the object pointed to by s2
 // into the object pointed to by s1.
 REQ("memcpy.01", "", buffer_compare(buffer, buffer + 100, 100) == 0);

 // The memcpy() function shall return s1
 REQ("memcpy.03", "", res == buffer);
</CODE>
<FINALLY>
 if (buffer != NULL) free(buffer);
</FINALLY>

T2C test for memcpy

<CODE>
 char *res, *buffer = NULL;

 buffer = malloc(SIZE);
 if (buffer == NULL) ABORT_TEST_PURPOSE("Not enough memory");

 // If copying takes place between objects that overlap, the behavior is undefined.
 REQ("app.memcpy.02", "", !are_buffers_overlapped(buffer+S1,buffer+S2,N));

 res = memcpy(buffer + S1, buffer + S2, N);

 // The memcpy() function shall copy n bytes from the object pointed to by s2
 // into the object pointed to by s1.
 REQ("memcpy.01", "", buffer_compare(buffer + S1, buffer + S2, N) == 0);

 // The memcpy() function shall return s1
 REQ("memcpy.03", "", res == buffer + S1);
</CODE>
<FINALLY>
 if (buffer != NULL) free(buffer);
</FINALLY>

T2C test for memcpy

<PURPOSE>
 1000
 0
 50
 50
</PURPOSE>

<PURPOSE>
 1000
 50
 0
 50
</PURPOSE>

Test Generation by Template

T2C Main Elements
<BLOCK>

 <TARGETS>
g_array_remove_range

</TARGETS>

<DEFINE>
#define TYPE <%0%>
#define INDEX <%1%>

</DEFINE>

<CODE>
...
REQ(“g_array_remove_range.01”, “”,
g_array_remove_range(ga, TYPE, INDEX) != old);
...

</CODE>

<PURPOSE>
int
6

</PURPOSE>

<PURPOSE>
double
999

</PURPOSE>

</BLOCK>

List of functions under
test

Names of test
parameters

Parameterized
test scenario

A set of parameters'
values

A set of parameters'
values

T2C Test Development Process

See details about test development
using T2C framework here:

http://ispras.linux-foundation.org/
index.php/T2C_Framework

T2C Results – LSB Desktop

Target
Library

Version Interfaces
(Tested of Total)

Requirements
(Tested of Total)

Code Coverage
(Lines of Code)

Bugs
Found

libatk-1.0 1.19.6
222 of 222

(100%)
497 of 515

(96%)
- 11

libglib-2.0 2.14.0
832 of 847

(98%)
2290 of 2461

(93%)
12203 of 16263

(75.0%)
13

libgthread-
2.0

2.14.0
2 of 2

(100%)
2 of 2

(100%)
149 of 211

(70.6%)
0

libgobject-
2.0

2.16.0
313 of 314

(99%)
1014 of 1205

(84%)
5605 of 7000

(80.1%)
2

libgmodule-
2.0

2.14.0
8 of 8

(100%)
17 of 21
(80%)

211 of 270
(78.1%)

2

libfonconfig 2.4.2
160 of 160

(100%)
213 of 272

(78%)
- 11

Total
1537 of 1553

(99%)
4033 of 4476

(90%)
18168 of

23744 (76.5%)
39

Institute for System Programming of the Russian Academy of Sciences

OLVER – Model Based Testing

http://ispras.linux-foundation.org/

Open Linux VERification
Linux Standard Base 3.1

LSB Core ABI

GLIBC

libc libcrypt libdl

libpam libz libncurses

libm libpthread librt libutil

LSB Core 3.1 / ISO 23360

ABI Utilities ELF, RPM, …

LSB C++ LSB Desktop

OLVER Process

Requirements Catalogue

{
 pre
 {
 // If copying takes place between objects that overlap, the behavior is undefined.
 REQ("app.memcpy.02", "Objects are not overlapped", TODO_REQ());

 return true;
 }
 post
 {
 /*The memcpy() function shall copy n bytes from the object
 pointed to by s2 into the object pointed to by s1. */
 REQ("memcpy.01", "s1 contain n bytes from s2", TODO_REQ());

 /* The memcpy() function shall return s1; */
 REQ("memcpy.03", "memcpy() function shall return s1", TODO_REQ());

 return true;
 }
}

memcpy() specification template

specification
VoidTPtr memcpy_spec(CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n)
{
 pre
 {
 /* [Consistency of test suite] */
 REQ("", "Memory pointed to by s1 is available in the context",
 isValidPointer(context,s1));
 REQ("", "Memory pointed to by s2 is available in the context",
 isValidPointer(context,s2));

 /* [Implicit precondition] */
 REQ("", "Memory pointed to by s1 is enough", sizeWMemoryAvailable(s1) >= n);
 REQ("", "Memory pointed to by s2 is enough", sizeRMemoryAvailable(s2) >= n);

 // If copying takes place between objects that overlap, the behavior is undefined.
 REQ("app.memcpy.02", "Objects are not overlapped",
 !areObjectsOverlapped(s1,n,s2,n));

 return true;
 }

memcpy() precondition

OLVER Distributed Architecture

Host System Target System

OLVER Test Suite

scenario oracle

mediator
OLVER Test Agent

System Under Test

specification
VoidTPtr memcpy_spec(CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n)
{
 pre
 {
 /* [Consistency of test suite] */
 REQ("", "Memory pointed to by s1 is available in the context",
 isValidPointer(context,s1));
 REQ("", "Memory pointed to by s2 is available in the context",
 isValidPointer(context,s2));

 /* [Implicit precondition] */
 REQ("", "Memory pointed to by s1 is enough", sizeWMemoryAvailable(s1) >= n);
 REQ("", "Memory pointed to by s2 is enough", sizeRMemoryAvailable(s2) >= n);

 // If copying takes place between objects that overlap, the behavior is undefined.
 REQ("app.memcpy.02", "Objects are not overlapped",
 !areObjectsOverlapped(s1,n,s2,n));

 return true;
 }

memcpy() precondition

specification
VoidTPtr memcpy_spec(CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n) {
 post
 {
 /*The memcpy() function shall copy n bytes from the object
 pointed to by s2 into the object pointed to by s1. */
 REQ("memcpy.01", "s1 contain n bytes from s2",
 equals(readCByteArray_VoidTPtr(s1,n), @readCByteArray_VoidTPtr(s2,n))
);

 /* [The object pointed to by s2 shall not be changed] */
 REQ("", "s2 shall not be changed",
 equals(readCByteArray_VoidTPtr(s2,n), @readCByteArray_VoidTPtr(s2,n)));

 /* The memcpy() function shall return s1; */
 REQ("memcpy.03", "memcpy() function shall return s1",equals_VoidTPtr(memcpy_spec,s1));

 /* [Other memory shall not be changed] */
 REQ("", "Other memory shall not be changed",
 equals(readCByteArray_MemoryBlockExceptFor(getTopMemoryBlock(s1), s1, n),
 @readCByteArray_MemoryBlockExceptFor(getTopMemoryBlock(s1), s1, n)));

 return true;
 }

memcpy() postcondition

Specifications

?
System
Under
Test

Test Actions

Test oracle

Test Oracle Generation

Test Scenarios Generation
CTesK Test

Engine

Test scenario

● abstract state
● set of test actions
● Test Engine generates a

sequence of actions
● to ensure: each action

is executed in each
abstract state

Bug Example - POSIX mq

message queuewaiting queue

messagesthreads

● sending threads are blocked if queue is full
● receiving threads are blocked if queue is empty

● Test scenario abstract state:
● number of messages in the queue
● number of threads waiting to send
● number of threads waiting to receive

Bug Example - POSIX mq
(0,0,0)

Bug Example - POSIX mq

1. receiver blocks

 1

(0,0,0)

(1,0,0)

Bug Example - POSIX mq

1. receiver blocks

 1

2. sender puts all messages and blocks

 1 m m m m m m m m 1

(0,0,0)

(1,0,0)

(1,N,1)

Bug Example - POSIX mq

1. receiver blocks

 1

2. sender puts all messages and blocks

 1 m m m m m m m m 1

3. another high priority sender blocks

(0,0,0)

(1,0,0)

(1,N,1)

 1 m m m m m m m m 1 1 (1,N,2)

Bug Example - POSIX mq

1. receiver blocks

 1

2. sender puts all messages and blocks

 1 m m m m m m m m 1

3. another high priority sender blocks

(0,0,0)

(1,0,0)

(1,N,1)

 1 m m m m m m m m 1 1

4. receiver receives all messages

(1,N,2)

 1 (0,0,1)

Bug Example - POSIX mq

1. receiver blocks

 1

2. sender puts all messages and blocks

 1 m m m m m m m m 1

3. another high priority sender blocks

(0,0,0)

(1,0,0)

(1,N,1)

 1 m m m m m m m m 1 1

4. receiver receives all messages

(1,N,2)

 1

5. 2nd sender never unblocked

(0,0,1)

OLVER Results

● Requirements catalogue built for LSB and POSIX
● 1532 interfaces
● 22663 elementary requirements

● 97 deficiencies in specification reported
● Formal specifications and tests developed for

● 1270 interface (good quality)
● + 260 interfaces (basic quality)

● 80+ bugs reported in modern distributions
● OLVER is a part of the official LSB Certification test suite

http://ispras.linuxfoundation.org

OLVER Conclusions

● model based testing allows to achieve better
quality using less resources

● maintenance of MBT is cheaper

OLVER Conclusions

● model based testing allows to achieve better
quality using less resources
if you have advanced test engineers

● maintenance of MBT is cheaper
if you have advanced test engineers

OLVER Conclusions

● model based testing allows to achieve better
quality using less resources
if you have advanced test engineers

● maintenance of MBT is cheaper
if you have advanced test engineers

● traditional tests are more useful for typical test
engineers and developers

OLVER Conclusions

● model based testing allows to achieve better
quality using less resources
if you have advanced test engineers

● maintenance of MBT is cheaper
if you have advanced test engineers

● traditional tests are more useful for typical test
engineers and developers

● so, long term efficiency is questionable
● but...

OLVER Conclusions

OS Verification

T2C UniTESK

1 kind
of bugs

all kinds
of bugs

1. Formal specification
2. Test sequence generation
3. Distributed architecture

1. Requirements traceability
2. Test generation by template

in all executionsin 1 execution

 59

LSB Desktop 3.1 (18841 interfaces)

X11 Libraries (1253)

OpenGL (450)

PNG, JPEG (148)

Fontconfig (160)

GTK+ (4622)

Qt3 (10936)

XML (1272)

LSB Desktop

Some Statistics

Release
Date

System
Calls

Libraries Interfaces Utilities

Debian 7.0 May 2013 ~350 ~1650 ~ 720 000 ~10 000

RTOS Nov 2013 ~200 - ~700 ~80

Institute for System Programming of the Russian Academy of Sciences

API Sanity Autotest

Smoke Testing

Smoke testing – checks only main use cases for basic
requirements, i.e. the system under test is not broken and
its results looks like correct.

API Sanity Autotest

API Sanity Autotest

*.h
C/C++ header

files Tests

http://ispras.linuxfoundation.org/

API Sanity Autotest

API Sanity Autotest

*.h
C/C++ header

Files

Tests

descriptor

Additional semantic information

● How to initialize library
● Hot to get a valid data of a particular type
● What is a valid argument of a particular function
● Which check can be done for returned types if it is of a

particular type

Special Expressions

● $(type) – create an object of particular type

 void create_QProxyModel(QProxyModel* Obj) {
 Obj­>setSourceModel($(QItemModel*));
 }

● $[interface] – call the interface with some valid arguments

 xmlListPtr create_filled_list() {
 xmlListPtr l = $[xmlListCreate];
 int num = 100;
 xmlListPushBack(l,&num);
 return l;
 }

Sources of Scalability

● Special expressions
● Extensive reuse

 → Minimal duplication of code

Results

Libraries Number of interfaces

libqt-mt 9 792

libQtCore 2 066

libQtGui 7 439

libQtNetwork 406

libQtOpenGL 84

libQtSql 362

libQtSvg 66

libQtXml 380

libxml2 1 284

Total 21 879

Bugs Found (1)

http://git.savannah.gnu.org/cgit/freetype/freetype2.git/commit/?id=e30de299f28370ed5aa65755c6be69da58eefc72

http://trac.libssh2.org/ticket/173

Bugs Found (1)

OS Verification

T2C UniTESK

all kinds
of bugs

1. Almost automatic test generation
2. Smoke testing

APISanity

in all executionsin 1 execution

1 kind
of bugs

T2C OLVER Autotest
Monitoring Aspects
Kinds of Observable Events

interface events + + +
internal events

Events Collection
internal + + +
external
embedded

Requirements Specification
in-place (local, tabular) + +
formal model (pre/post+invariants,...) +
assertions/prohibited events External External External

Events Analysis
online + + +

in-place + +
outside +

offline

Test Aspects (1)

T2C OLVER Autotest
Active Aspects
Target Test Situations Set

requirements coverage + +
class equivalence coverage +
model coverage (SUT/reqs) +
source code coverage

Test Situations Setup/Set Gen
passive
fixed scenario + +

manual +
pre-generated

coverage driven
random +-

adapting scenario +
coverage driven +

source code coverage
model/... coverage +

random
Test Actions

application interface + + +
HW interface
internal actions

inside
outside

Test Aspects (2)

Institute for System Programming of the Russian Academy of Sciences

Configuration Testing

V.V. Kuliamin. Combinatorial generation of operation system software configurations.
Proceedings of the Institute for System Programming Volume 23. 2012 y. pp. 359-370.

OS Verification

T2C UniTESK

1 kind
of bugs

all kinds
of bugs

APISanity

cfg cfg 1. Cover sets for configuration
parameters
2. Adaptation of tests?

in all executionsin 1 execution

T2C OLVER Autotest Cfg
Monitoring Aspects -
Kinds of Observable Events

interface events + + +
internal events

Events Collection
internal + + +
external
embedded

Requirements Specification
in-place (local, tabular) + + If
formal model (pre/post+invariants,...) + If
assertions/prohibited events External External External Co

Events Analysis
online + + +

in-place + +
outside +

offline

Test Aspects (1)

T2C OLVER Autotest Cfg
Active Aspects +-
Target Test Situations Set cfgs

requirements coverage + +
class equivalence coverage +
model coverage (SUT/reqs) +
source code coverage

Test Situations Setup/Set Gen
passive
fixed scenario + +

manual +
pre-generated

coverage driven +-
random +-

adapting scenario +
coverage driven +

source code coverage
model/... coverage +

random
Test Actions

application interface + + +
HW interface
internal actions

inside
outside

Test Aspects (2)

Institute for System Programming of the Russian Academy of Sciences

Robustness Testing

Fault Handling Code

● Is not so fun
● Is really hard to keep all details in mind
● Practically is not tested
● Is hard to test even if you want to
● Bugs seldom(never) occurs

=> low pressure to care

http://git.savannah.gnu.org/cgit/freetype/freetype2.git/commit/?id=e30de299f28370ed5aa65755c6be69da58eefc72

Why do we care?

● It beats someone time to time
● Safety critical systems
● Certification authorities

http://trac.libssh2.org/ticket/173

Operating Systems

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

Run-Time Testing of Fault Handling

● Manually targeted test cases
+ The highest quality

– Expensive to develop and to maintain

– Not scalable
● Random fault injection on top of existing tests

+ Cheap

– Oracle problem

– No any guarantee

– When to finish?

Systematic Approach

● Hypothesis:
● Existing test lead to more-or-less deterministic

control flow in kernel code
● Idea:

● Execute existing tests and collect all potential
fault points in kernel code

● Systematically enumerate the points and inject
faults there

Experiments – Outline

● Target code
● Fault injection implementation
● Methodology
● Results

Experiments – Target

● Target code: file system drivers
● Reasons:

● Failure handling is more important than in
average

● Potential data loss, etc.
● Same tests for many drivers
● It does not require specific hardware
● Complex enough

Linux File System Layers
User Space Application

VFS
Block Based FS:
ext4, xfs, btrfs,
jfs, ...

Network FS:
nfs, coda, gfs,
ocfs, ...

Pseudo FS:
proc, sysfs,
...

Special Purpose:
tmpfs, ramfs,
...

Block I/O layer
- Optional stackable devices (md,dm,...)
- I/O schedulers

Direct I/O Buffer cache / Page cache network

Block DriverDisk Block Driver CD

ioctl,
sysfs

sys_mount, sys_open, sys_read, ...

File System Drivers - Size

File System Driver Size, LoC

JFS 18 KLOC

Ext4 37 KLoC
with jbd2

XFS 69 KLoC

BTRFS 82 KLoC

F2FS 12 KLoC

File System Driver – VFS
Interface

● file_system_type
● super_operations
● export_operations
● inode_operations
● file_operations
● vm_operations
● address_space_operations
● dquot_operations
● quotactl_ops
● dentry_operations

~100 interfaces in total

File System Driver ioctl sysfs

JFS 6 -

Ext4 14 13

XFS 48 -

BTRFS 57 -

FS Driver – Userspace Interface

File System Driver mount options mkfs options

JFS 12 6

Ext4 50 ~30

XFS 37 ~30

BTRFS 36 8

FS Driver – Partition Options

FS Driver – On-Disk State

File System Hierarchy

* File Size

* File Attributes

* File Fragmentation

* File Content (holes,...)

FS Driver – In-Memory State
● Page Cache State
● Buffers State
● Delayed Allocation
● ...

Linux File System Layers
User Space Application

VFS

Block Based FS:
ext4, xfs, btrfs,
jfs, ...

Network FS:
nfs, coda, gfs,
ocfs, ...

Pseudo FS:
proc, sysfs,
...

Special Purpose:
tmpfs, ramfs,
...

Block I/O layer
- Optional stackable devices (md,dm,...)
- I/O schedulers

Direct I/O Buffer cache / Page cache network

Block DriverDisk Block Driver CD

ioctl,
sysfs

sys_mount, sys_open, sys_read, ...100 interfaces30-50 interfaces

30 mount opts
30 mkfs opts

File System State

VFS State*
FS Driver State

FS Driver – Fault Handling

● Memory Allocation Failures
● Disk Space Allocation Failures
● Read/Write Operation Failures

Fault Injection - Implementation

● Based on KEDR framework*
● intercept requests for memory allocation/bio

requests
● to collect information about potential fault

points
● to inject faults

● also used to detect memory/resources leaks

(*) http://linuxtesting.org/project/kedr

KEDR Workflow

http://linuxtesting.org/project/kedr

Experiments – Oracle Problem

● Assertions in tests are disabled
● Kernel oops/bugs detection
● Kernel assertions, lockdep, memcheck, etc.
● Kernel sanitizers
● KEDR Leak Checker

Methodology – The Problem

● Source code coverage is used to measure
results on fault injection

● If kernel crashes code, coverage results are
unreliable

Methodology – The Problem

● Source code coverage is used to measure
results on fault injection

● If kernel crashes code, coverage results are
unreliable

● As a result
● Ext4 was analyzed only
● XFS, BTRF, JFS, F2FS, UbiFS, JFFS2

crashes and it is too labor and time
consuming to collect reliable data

Experiment Results

Systematic vs. Random
Increment
new lines

Time
min

Cost
second/line

Xfstests without fault simulation - 2 -

Xfstests+random(p=0.005,repeat=200) 411 182 27

Xfstests+random(p=0.01,repeat=200) 380 152 24

Xfstests+random(p=0.02,repeat=200) 373 116 19

Xfstests+random(p=0.05,repeat=200) 312 82 16

Xfstests+random(p=0.01,repeat=400) 451 350 47

Xfstests+stack filter 423 90 13

Xfstests+stackset filter 451 237 31

Systematic vs. Random

+ 2 times more
cost effective

+ Repeatable results

– Requires more
complex engine

+ Cover double faults

– Unpredictable

– Nondeterministic

OS Verification

T2C UniTESK

1 kind
of bugs

all kinds
of bugs

APISanity

cfg
FI

cfg
FI

1. Systematic fault injection
2. Test adaptation?

in all executionsin 1 execution

T2C OLVER Autotest Cfg FI KEDR-LC
Monitoring Aspects - -
Kinds of Observable Events

interface events + + +
internal events +

Events Collection
internal + + + +
external
embedded

Requirements Specification Specific
in-place (local, tabular) + + If Dis
formal model (pre/post+invariants,...) + If Co
assertions/prohibited events External External External Co Co

Events Analysis
online + + +

in-place + + +
outside +

offline

Test Aspects (1)

T2C OLVER Autotest Cfg FI KEDR-LC
Active Aspects +- + -
Target Test Situations Set cfgs

requirements coverage + +
class equivalence coverage +
model coverage (SUT/reqs) +
source code coverage almost

Test Situations Setup/Set Gen
passive
fixed scenario + +

manual +
pre-generated

coverage driven +-
random +-

adapting scenario +
coverage driven +

source code coverage almost
model/... coverage +

random as option
Test Actions

application interface + + +
HW interface
internal actions +

inside +
outside

Test Aspects (2)

Institute for System Programming of the Russian Academy of Sciences

Concolic Testing (S2E)

Concolic Testing

● Concolic = Symbolic + Concrete
● SUT runs in concrete and in symbolic modes
● Symbolic execution is used to collect

conditions and branches of the current
path

● Collected data is used to generate new input
data to cover more execution paths

Concolic Tools

S2E

● based on KLEE
● uses patched Qemu

● source code is not required
● supports plugins

(*) https://s2e.epfl.ch/

S2E – OS Level Checks

● lockdep
● asserts
● memleak
● sanitizers

S2E – VM Level Checks

● many paths
● requires plugins

S2E for Linux File Systems
● Instrumentation FS driver with SystemTap
● Mark metadata readed from disk as

symbolic
static inline void s2e_make_symbolic(void *buf, int size, char *name){
__asm__ __volatile__(
".byte 0x0f, 0x3f\n"
".byte 0x00, 0x03, 0x00, 0x00\n"
".byte 0x00, 0x00, 0x00, 0x00\n"
: : "a" (buf), "b" (size), "c" (name));
}

probe vfs.read, vfs.write
{
s2e_make_symbolic(
&($file->f_path->dentry->d_inode->i_count),
4,
"i_count")
}

OS Verification

T2C UniTESK

1 kind
of bugs

all kinds
of bugs

APISanity

cfg
FI

cfg
FI

1. Automatic coverage extension
2. Limited complexity

in all executionsin 1 execution

S2E

T2C OLVER Autotest Cfg FI KEDR-LC S2E
Monitoring Aspects - - + +-
Kinds of Observable Events

interface events + + +
internal events + +

Events Collection
internal + + + +
external +
embedded

Requirements Specification Specific Plugin
in-place (local, tabular) + + If Dis Dis
formal model (pre/post+invariants,...) + If Co Co
assertions/prohibited events External External External Co Co Co

Events Analysis
online + + +

in-place + + +
outside +

offline

Test Aspects (1)

T2C OLVER Autotest Cfg FI KEDR-LC S2E
Active Aspects +- + - +
Target Test Situations Set cfgs

requirements coverage + +
class equivalence coverage +
model coverage (SUT/reqs) +
source code coverage almost +

Test Situations Setup/Set Gen
passive
fixed scenario + +

manual +
pre-generated

coverage driven +-
random +-

adapting scenario +
coverage driven +

source code coverage almost +
model/... coverage +

random as option
Test Actions

application interface + + +
HW interface
internal actions + +

inside +
outside +

Test Aspects (2)

Institute for System Programming of the Russian Academy of Sciences

Race Hound

Data race
● Data race is a situation if two threads

access one location in memory
● at least one of them is a write
● they are not both synchronization accesses
● can be executed on a multiprocessor in such

a way that two conflicting memory
accesses are performed simultaneously

X

Thr1 Thr2

read X write X

Race Hound

● idea close to DataCollider (Microsoft Research)

https://forge.ispras.ru/projects/race-hound

X

Thr1 Thr2

write X

stop Thr2,
setup hardware breakpoint
and wait some time

write X

Race Hound

● idea close to DataCollider (Microsoft Research)

https://forge.ispras.ru/projects/race-hound

X

Thr1 Thr2

read X

write X

stop Thr2,
setup hardware breakpoint
and wait some time

If someone accesses X,
then there is a data race

Race Hound Results

● works on x86/x86-64 multicore
● Linux kernel >= 3.2
● acknowledged 3 data race in Intel e1000

Linux device driver
● ~10 data race in total

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH
Monitoring Aspects - - + +- +
Kinds of Observable Events

interface events + + +
internal events + + +

Events Collection
internal + + + +
external +
embedded

Requirements Specification Specific Plugin Specific
in-place (local, tabular) + + If Dis Dis
formal model (pre/post+invariants,...) + If Co Co
assertions/prohibited events External External External Co Co Co

Events Analysis
online + + +

in-place + + + +
outside +

offline

Test Aspects (1)

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider
Monitoring Aspects - - + +- + +-
Kinds of Observable Events

interface events + + +
internal events + + + +

Events Collection
internal + + + + +
external +
embedded

Requirements Specification Specific Plugin Specific Specific
in-place (local, tabular) + + If Dis Dis
formal model (pre/post+invariants,...) + If Co Co
assertions/prohibited events External External External Co Co Co

Events Analysis
online + + +

in-place + + + +
outside +

offline +

Test Aspects (1)

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH
Active Aspects +- + - + +
Target Test Situations Set cfgs Specific

requirements coverage + +
class equivalence coverage +
model coverage (SUT/reqs) +
source code coverage almost +

Test Situations Setup/Set Gen
passive +-
fixed scenario + +

manual +
pre-generated

coverage driven +-
random +-

adapting scenario +
coverage driven +

source code coverage almost +
model/... coverage +

random as option
Test Actions

application interface + + +
HW interface
internal actions + + +

inside + +
outside +

Test Aspects (2)

Institute for System Programming of the Russian Academy of Sciences

Kernel Strider

Kernel Strider

● KEDR collects data on all memory access from target
module and calls to synchronization primitives

● annotation of Linux synchronization primitives
● annotation of nonstandard happens-before

dependencies in module code
● ThreadSanitizer in Offline mode is used to find data

races

https://forge.ispras.ru/projects/kernel-strider

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider
Monitoring Aspects - - + +- + +-
Kinds of Observable Events

interface events + + +
internal events + + + +

Events Collection
internal + + + + +
external +
embedded

Requirements Specification Specific Plugin Specific Specific
in-place (local, tabular) + + If Dis Dis
formal model (pre/post+invariants,...) + If Co Co
assertions/prohibited events External External External Co Co Co

Events Analysis
online + + +

in-place + + + +
outside +

offline +

Test Aspects (1)

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider
Active Aspects +- + - + + -
Target Test Situations Set cfgs Specific

requirements coverage + +
class equivalence coverage +
model coverage (SUT/reqs) +
source code coverage almost +

Test Situations Setup/Set Gen
passive +-
fixed scenario + +

manual +
pre-generated

coverage driven +-
random +-

adapting scenario +
coverage driven +

source code coverage almost +
model/... coverage +

random as option
Test Actions

application interface + + +
HW interface
internal actions + + +

inside + +
outside +

Test Aspects (2)

Operating Systems

System
Calls

Special
File Systems

Signals,
Memory updates
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
SystemOLVER,T2C,Sanity

FI

Leak
KStrider

KLEE

RH

Spruce-T2C

Institute for System Programming of the Russian Academy of Sciences

SVACE – Static Analysis

SVACE

● Static analysis of C/C++/Java code,
Linux/Windows

● 150+ kinds of defects
● Buffer overflows, NULL-pointer dereferences
● Memory management, tainted input
● Concurrency issues
● Lightweight analysis of semantic patterns

● Eclipse plugin or WebUI

OS Verification

T2C UniTESK

1 kind
of bugs

all kinds
of bugs

APISanity

cfg
FI

cfg
FI

SVACE

1. Static analysis
2. Quickly finds potential bugs
3. No any guarantee

in all executionsin 1 execution

Institute for System Programming of the Russian Academy of Sciences

Linux Driver Verification

Commit Analysis(*)

● All patches in stable trees (2.6.35 – 3.0) for
1 year:

● 26 Oct 2010 – 26 Oct 2011
● 3101 patches overall

(*) Khoroshilov A.V., Mutilin V.S., Novikov E.M. Analysis of typical faults in Linux operating system
drivers. Proceedings of the Institute for System Programming of RAS, volume 22,
 2012, pp. 349-374. (In Russian)
http://ispras.ru/ru/proceedings/docs/2012/22/isp_22_2012_349.pdf
Raw data: http://linuxtesting.org/downloads/ldv-commits-analysis-2012.zip

Commit Analysis

● All patches in stable trees (2.6.35 – 3.0) for
1 year:

● 26 Oct 2010 – 26 Oct 2011
● 3101 patches overall

Unique commits to drivers
(1503 ~ 50%)

Support of a
new functionality

(321 ~ 20%)

Bug fixes
(1182 ~ 80%)

Commit Analysis

Typical bug fixes
(349 ~ 30%)

Generic bug fixes
(102 ~ 30%)

Fixes of Linux kernel API misuse
(176 ~ 50%)

Fixes of data races,
deadlocks
(71 ~ 20%)

● All patches in stable trees (2.6.35 – 3.0) for
1 year:

● 26 Oct 2010 – 26 Oct 2011
● 3101 patches overall

Taxonomy of Typical Bugs

Rule classes Types
Number of
bug fixes

Percents
Cumulative

total
percents

Correct usage of
the Linux kernel

API
(176 ~ 50%)

Alloc/free resources 32 ~18% ~18%

Check parameters 25 ~14% ~32%

Work in atomic context 19 ~11% ~43%

Uninitialized resources 17 ~10% ~53%

Synchronization
primitives in one thread

12 ~7% ~60%

Style 10 ~6% ~65%

Network subsystem 10 ~6% ~71%

USB subsystem 9 ~5% ~76%

Check return values 7 ~4% ~80%

DMA subsystem 4 ~2% ~82%

Core driver model 4 ~2% ~85%

Miscellaneous 27 ~15% 100%

Generic
(102 ~ 30%)

NULL pointer
dereferences

31 ~30% ~30%

Alloc/free memory 24 ~24% ~54%

Syntax 14 ~14% ~68%

Integer overflows 8 ~8% ~76%

Buffer overflows 8 ~8% ~83%

Uninitialized memory 6 ~6% ~89%

Miscellaneous 11 ~11% 100%

Synchronization
(71 ~ 20%)

Races 60 ~85% ~85%

Deadlocks 11 ~15% 100%

Software Model Checking

entry point

error location

● Reachability problem

Verification Tools World

int main(int argc,char* argv[])

{

 ...

 other_func(var);

 ...

}

void other_func(int v)
{
 ...
 assert(x != NULL);
}

Device Driver World
int usbpn_open(struct net_device *dev) { ... };
int usbpn_close(struct net_device *dev) { ... };
struct net_device_ops usbpn_ops = {

.ndo_open = usbpn_open, .ndo_stop = usbpn_close
};
int usbpn_probe(struct usb_interface *intf, const struct usb_device_id *id){

dev->netdev_ops = &usbpn_ops;
err = register_netdev(dev);

}
void usbpn_disconnect(struct usb_interface *intf){...}

struct usb_driver usbpn_struct = {
.probe = usbpn_probe, .disconnect = usbpn_disconnect,

};
int __init usbpn_init(void){ return usb_register(&usbpn_struct);}
void __exit usbpn_exit(void){usb_deregister(&usbpn_struct);}

module_init(usbpn_init);
module_exit(usbpn_exit);

No explicit calls to
init/exit procedures

Device Driver World
int usbpn_open(struct net_device *dev) { ... };
int usbpn_close(struct net_device *dev) { ... };
struct net_device_ops usbpn_ops = {

.ndo_open = usbpn_open, .ndo_stop = usbpn_close
};
int usbpn_probe(struct usb_interface *intf, const struct usb_device_id *id){

dev->netdev_ops = &usbpn_ops;
err = register_netdev(dev);

}
void usbpn_disconnect(struct usb_interface *intf){...}

struct usb_driver usbpn_struct = {
.probe = usbpn_probe, .disconnect = usbpn_disconnect,

};
int __init usbpn_init(void){ return usb_register(&usbpn_struct);}
void __exit usbpn_exit(void){usb_deregister(&usbpn_struct);}

module_init(usbpn_init);
module_exit(usbpn_exit);

Callback interface
procedures registration

No explicit calls to
init/exit procedures

Device Driver World
int usbpn_open(struct net_device *dev) { ... };
int usbpn_close(struct net_device *dev) { ... };
struct net_device_ops usbpn_ops = {

.ndo_open = usbpn_open, .ndo_stop = usbpn_close
};
int usbpn_probe(struct usb_interface *intf, const struct usb_device_id *id){

dev->netdev_ops = &usbpn_ops;
err = register_netdev(dev);

}
void usbpn_disconnect(struct usb_interface *intf){...}

struct usb_driver usbpn_struct = {
.probe = usbpn_probe, .disconnect = usbpn_disconnect,

};
int __init usbpn_init(void){ return usb_register(&usbpn_struct);}
void __exit usbpn_exit(void){usb_deregister(&usbpn_struct);}

module_init(usbpn_init);
module_exit(usbpn_exit);

Callback interface
procedures registration

No explicit calls to
init/exit procedures

Driver Environment Model
int main(int argc,char* argv[])
{
 usbpn_init()
 for(;;) {
 switch(*) {
 case 0: usbpn_probe(*,*,*);break;
 case 1: usbpn_open(*,*);break;
 ...
 }
 }
 usbpn_exit();
}

Driver Environment Model (2)

● Order limitation
● open() after probe(), but before

remove()
● Implicit limitations

● read() only if open() succeed
● and it is specific for each class of drivers

Model Checking and Linux Kernel

entry point

error location

● Reachability problem
 DONE

Error Location?
int f(int y)
{
struct urb *x;

 x = usb_alloc_urb(0,GFP_KERNEL);
 ...
 usb_free_urb(x);

 return y;
}

Error Location?
int f(int y)
{
struct urb *x;

 x = usb_alloc_urb(0,GFP_KERNEL); // allocate new URB
 ...
 usb_free_urb(x); // deallocate URB: assert(x is NULL or previously allocated URB)

 return y;
}

 …
 // after module exit: assert(all allocated URBs are deallocated)

Instrumentation

int f(int y)
{
struct urb *x;

 x = usb_alloc_urb(0,GFP_KERNEL);

 ...

 usb_free_urb(x);

 return y;
}

set URBS = empty;

int f(int y)
{
struct urb *x;

 x = usb_alloc_urb();
 add(URBS, urb);
 ...
 assert(contains(URBS, x));
 usb_free_urb(x);
 remove(URBS, urb);

 return y;
}
 …
 // after module exit
 assert(is_empty(URBS));

// Model state: set of allocated URBs
set URBS = empty;

// Model functions
struct urn * ldv_usb_alloc_urb(void)
{
 void *urb;
 urb = ldv_alloc();
 if (urb) {
 add(URBS, urb);
 }
 return urb;
}

void ldv_usb_free_urb(struct urb *urb)
{
 if (urb) {
 remove(URBS, urb);
 }
}

// Pointcut declarations
pointcut USB_ALLOC_URB:
 call(struct urb *usb_alloc_urb(int, gfp_t));
pointcut USB_FREE_URB:
 call(void usb_free_urb(struct urb *));

// Update model state
around: USB_ALLOC_URB {
 return ldv_usb_alloc_urb();
}
around: USB_FREE_URB {
 ldv_usb_free_urb($arg1);
}

// Assertions
before: USB_FREE_URB {
 assert(contains(URBS, $arg1));
}
after: MODULE_EXIT {
 assert(is_empty(URBS));
}

Aspect-Oriented Notation

Instrumentation
int f(int y)
{
struct urb *x;

 x = usb_alloc_urb(0,GFP_KERNEL);
 ...
 usb_free_urb(x);

 return y;
}

int f(int y)
{
struct urb *x;

 x = ldv_usb_alloc_urb();
 ...
 assert(contains(URBS, x));
 ldv_usb_free_urb(x);

 return y;
}

 …
 // after module exit
 assert(is_empty(URBS));

Rule Instrumentor
● CIF – C Instrumentation Framework

● gcc-based aspect-oriented programming tool
for C language

● available under GPLv3:

http://forge.ispras.ru/projects/cif

Model Checking and Linux Kernel

entry point

error location

● Reachability problem
 DONE

 DONE

Linux Driver Verification

http://linuxtesting.org/ldv

SVCOMP'12 Results

SVCOMP'14 Results

SVCOMP'15 Results

BLAST
CPAchecker

Error Trace Visualizer

Bugs Found
http://linuxtesting.org/results/ldv

>230 patches already applied

OS Verification

T2C UniTESK

1 kind
of bugs

all kinds
of bugs

APISanity

cfg
FI

cfg
FI

SVACE LDV

1. Investigates all possible paths
2. Driver environment model
3. Is able to prove absence of bugs
 of particular kind
4. Requires nonzero hardware resources
 - time: 15 minutes per rule per module
 - memory: 15 Gb

in all executionsin 1 execution

OS Verification

T2C UniTESK

1 kind
of bugs

all kinds
of bugs

APISanity

cfg
FI

cfg
FI

SVACE LDV

1. Investigates all possible paths
2. Driver environment model
3. Is able to prove absence of bugs
 of particular kind
4. Requires nonzero hardware resources
 - time: 15 minutes per rule per module
 - memory: 15 Gb

in all executionsin 1 execution

Institute for System Programming of the Russian Academy of Sciences

Deductive Verification

http://ispras.ru/ru/proceedings/docs/2012/22/isp_22_2012_349.pdf
http://linuxtesting.org/downloads/ldv-commits-analysis-2012.zip

1947

1970

2000

2010

● Alan Turing — Lecture to the London Mathematical Society

● R. Floyd / C.A.R. Hoare Methods

● Tools for deductive verification of programs in C, Java, С#
● SunRise, ESC/Java, Frama-C, LOOP, Boogie/VCC

● Industrial applications
● Nuclear power (UK, France)
● Avionics (Airbus, NASA, UK Air Traffic Control)
● Operating systems

(seL4, PikeOS, Hyper-V)

Deductive verification

● Deductive Verification of Linux Security Module
● Joint project with NPO RusBITech
● Formal security model MROSL-DP

● Assumptions
● Linux kernel core conforms with its specifications

● It is not target to prove

● Target code
● Code is hardware independent
● Verification unfriendly
● Out of control

Astraver Project

MROSL DP

● Operating system access control model
● Hierarchical Role-Based Access Control

(RBAC)
● Mandatory Access Control (MAC)
● Mandatory Integrity Control (MIC)

● Implemented as Linux Security Module
(LSM) for Astra Linux

● ~150 pages in mathematical notation

Toolset for Event-B models verification

Model of security
requirements

Formalized security
model

Formalized
low-level security

model

Manual

Automated
verification

Security
requirements

Security model

AstraVer Toolchain
for deductive verification of C programs
(based on Frama-C – Jessie – Why3)

Pre-/post-conditions
of LSM operations

Security
arcitecture

LSM
source code

Model of security
requirements

Mathematical
notation

LSM
Implementation

implements

Specificatiion of
library functions

Linux
kernel

AstraVer Project

AstraLinux

Problems with the tools
● Memory model limitations

● Arithmetics with pointers to fields of structures
(container_of)

● Prefix structure casts
● Reinterpret casts

● Integer model problems
● Limited code support

● Functional pointers
● String literals

● Scalability problems
● Usability problems

OS Verification

T2C UniTESK

1 kind
bugs

all kinds
of bugs

in all executions

APISanity

cfg
FI

cfg
FI

SVACE LDV

AstraVer

1. Proof of complete correctness
under some assumptions
2. Very labour intensive and
time consuming

in 1 execution

Operating Systems

System
Calls

Special
File Systems

Signals,
Memory updates
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
SystemOLVER,T2C,Sanity

FI

Leak
KStrider

KLEE

RH

Spruce-T2C

LDVAstraVer

SVACE

LockStat

Conclusions

● Test Execution System
● Benchmarking

Institute for System Programming of the Russian Academy of Sciences

Thank you!

Alexey Khoroshilov
khoroshilov@ispras.ru
http://linuxtesting.org/

Institute for System Programming of the Russian Academy of Sciences

Math

Test Results: Details
rint(262144.25)↑ = 262144

Exact

1 ulp errors*

2-5 ulp errors

6-210 ulp errors

210-220 ulp errors

>220 ulp errors

Errors in exceptional cases

Errors for denormals

Completely buggy Unsupported

logb(2−1074) = −1022expm1(2.2250738585072e−308) = 5.421010862427522e−20

exp(−6.453852113757105e−02) = 2.255531908873594e+15

sinh(29.22104351584205) = −1.139998423128585e+12

cosh(627.9957549410666) = −1.453242606709252e+272

sin(33.63133354799544) = 7.99995094799809616e+22

sin(− 1.793463141525662e−76) = 9.801714032956058e−2

acos(−1.0) = −3.141592653589794

cos(917.2279304172412) = −13.44757421002838

erf(3.296656889776298) = 8.035526204864467e+8

erfc(−5.179813474865007) = −3.419501182737284e+287

to nearest
to –∞

to +∞
to 0exp(553.8042397037792) = −1.710893968937284e+239

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Проект Open Linux VERification
	Процесс OLVER
	Slide 30
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Test Oracles
	(4) Тестовые сценарии
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	LSB Desktop
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 102
	Slide 103
	Slide 105
	Slide 114
	Slide 115
	Slide 116
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 184
	Slide 185
	Slide 186
	Slide 190
	Slide 191
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Test Results: Details

