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Abstract. Our submission to SV-COMP’17 is based on the software
verification framework CPAchecker. Combined with value analysis and
predicate analysis we use the concept of block-abstraction memoiza-
tion with optimization and several fixes relative to the version of SV-
COMP’16. A novelty of our approach is usage of BnB memory model
for predicate analysis, which efficiently divides the accessed memory into
memory regions and thus leads to smaller formulas.

1 Software Architecture

The framework CPAchecker can be used for software verification. Following
the concept of Configurable Program Analysis (CPA) [1], each abstract
domain is implemented in its own CPA, e.g., common tasks like tracking the
program location or the call stack are implemented in their own CPAs. The
CPAs in the framework can be combined to build an efficient and more precise
approach like value analysis or predicate analysis. A configurable algorithm like
CEGAR uses the CPAs to verify reachability and memory-safety properties.

CPAchecker is a Java program that uses the Eclipse CDT1 to parse C source
code, and the JavaSMT library2 [2] to query SMT solvers like SMTInterpol3, for
deciding the satisfiability of formulas and generating interpolants.

2 Verification Approach

Our configuration uses two orthogonal approaches, block-abstraction memoiza-
tion (BAM) and BnB memory model, to speedup the analysis. These approaches
are explained in the following.

The research was supported by RFBR grant 15-01-03934.
1 https://eclipse.org/cdt.
2 https://github.com/sosy-lab/java-smt.
3 https://ultimate.informatik.uni-freiburg.de/smtinterpol.
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2.1 Block-Abstraction Memoization with Value Analysis
and Predicate Analysis

BAM [3,4] implements modular verification by dividing the program into blocks
and analyzing them separately. The block size matches function calls, i.e., a
block starts at a function entry and ends at the corresponding function exit.
The analysis uses a cache to reuse block abstractions, such that whenever a
block that has been already analyzed is visited again, the stored result from the
cache is applied. BAM uses a nested analysis to track variables and assignments.
In our configuration BAM executes value analysis and predicate analysis in a
parallel manner, because this was found to be a very effective approach for find-
ing bugs and verifying programs with BAM. Figure 1 shows the control flow of
our approach. After finding a counterexample path, two precise counterexam-
ple checks are applied, one for each analysis. For a spurious path we apply a
refinement, for a feasible path we report a violation witness.
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Fig. 1. Control flow for BAM with value analysis and predicate analysis

2.2 Modeling Memory with Memory Regions

BnB is a memory model based on ideas of Bornat and Burstall [5,6]. The model
is implemented into the predicate analysis, which uses uninterpreted functions
for mapping memory locations to memory values. An uninterpreted function f is
a mathematical function, i.e. it satisfies the axiom ∀a.∀b.(a = b ⇒ f(a) = f(b)).

In a program a memory location is represented by an lvalue expression,
e.g., a pointer dereference ∗p. Assignments to lvalues change the memory state
and are modeled by introducing a new uninterpreted function having the new
memory value for the changed memory location and the same memory values
for the unchanged ones. For example, if we have an assignment for a pointer
dereference ∗p = expr, we model it by introducing a new function fnew with
fnew(p) = formula(expr). At the same time we should add retention conditions
stating equality of memory values for the unchanged memory locations of this
assignment. As far as we may not know the memory location for an lvalue expres-
sion during analysis, the retention conditions C are represented as a conjunction
of disjunctions for each memory location a:

C :=
∧

a∈{A1,...,AN}
(p = a ∨ fnew(a) = fold(a)) ,
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where p is an lvalue expression, A1, . . . , AN are memory locations, Ai �= Aj for
i �= j, and fold and fnew are uninterpreted functions for old and new memory
states. The complexity of C highly depends on the number of memory locations.

To reduce the formula complexity we introduce memory regions representing
disjoint sets of memory locations, i.e., a pointer associated with one memory
region never references a memory location in another region. For each mem-
ory region R with R ⊆ {A1, . . . , AN} we introduce a separate uninterpreted
function fR. For each lvalue expression we associate a memory region R, such
that an assignment to it changes only the memory locations from the associated
region. Hence in retention conditions C ′ we consider only addresses aR from a
corresponding region R:

C ′ :=
∧

aR∈R

(
p = aR ∨ fR

new(aR) = fR
old(a

R)
)
.

The retention conditions C ′ are less complex than C, because only a subset
R of memory locations is used to construct the formula instead of all possible
ones.

The previous implementation of the memory model [7] used type regions with
an assumption that every memory location is always accessed with the same type.
For this year we implemented BnB regions, which divide structure types into
separate memory regions by field names. For each structure field we introduce
a region defined by its name and structure type if we never take the memory
address of that field. In that case we assume that the field is always accessed
using field access expressions. Otherwise, if a memory address was taken, then
somewhere in a program we may access this field with a pointer to a field type,
thus we place such fields to a common memory region defined by the field type.

3 Strengths and Weaknesses

The contributed configuration is optimized for large programs where we need to
ignore many irrelevant details. BAM is effective for the programs consisting of
many functions, so that we can reuse block abstractions and have little overhead
of BAM itself.

The BnB memory model benefits from separation of memory into mem-
ory regions for different fields. We have made experiments on 2795 tasks from
the category DeviceDriversLinux64 and the ratio number of not addressed
fields/number of fields was 77%. According to the BnB memory model the major-
ity of fields can be placed into separate regions. Thus the number of disjunctions
in the resulting formulas becomes smaller. We have compared the results to the
tool without BnB memory model. The CPU time was almost the same. With
BnB memory model it proves 6 tasks more, but finds 5 less false, thus gets a
little more points. In practice the BnB memory model may work slower if the
program contains pointers for which memory was not allocated with standard
memory allocation functions. In this case the analysis may prove more paths to
be unreachable, thus requiring more refinements.
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As far as BnB separates different fields into disjoint regions it knows that an
assignment to one field does not change the other memory regions even if the
pointer does not point to properly allocated memory.

Consider the following example:

p = not_malloc();

p->f = a; // write access

q->g = b; p->h = c; // updates of other fields

if (p->f != a) __VERIFIER_error();

The assignments to q->g and p->h do not change p->f and we can be sure that it
still contains value a.

4 Setup and Configuration

We submit CPAchecker in version 1.6.1-svcomp17-bam-bnb build from revision
ldv-bam:23987 for participation in the categories DeviceDriversLinux64 and Falsi-
fication. The tool requires a Java 8 runtime environment and is available at: http://lin
uxtesting.org/downloads/CPAchecker-1.6.1-svcomp17-bam-bnb-unix.tar.bz2

CPAchecker has to be executed with the following command line:

scripts/cpa.sh -sv-comp17-bam-bnb -heap 10000m -spec prop.prp program.i

5 Project and Contributors

The CPAchecker project is open-source and developed by an international
research group from Ludwig-Maximilian University of Munich, University of Pas-
sau, and Institute for System Programming of the Russian Academy of Sciences.
We thank all contributors for their work. More information about the project
(including a list of bugs in the Linux kernel found by LDV4 with CPAchecker)
can be accessed at https://cpachecker.sosy-lab.org.
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