

A Memory Model and Other Extensions of ACSL for Deductive Verification of Linux Kernel Modules User-guided separation analysis Operations on bounded integers Proofs as C code

Mikhail Mandrykin, Alexey Khoroshilov

ISP RAS

LRI, May 29th, 2017

LRI, May 29th, 2017 1 / 79

Contents

- 1 Basic region-based model
- 2 Limitations of basic region-based model
- **3** User-guided separation analysis
- Integer models: mathematical, bitwise and composite
- **(5)** Operation semantics: checked unbounded vs. wrap-around
- 6 Real world examples: wrap-around arithmetic & casts
- Composite integer model: summary
- 8 Proofs as C code

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

From the paper

T. Hubert and C. Marché, "Separation analysis for deductive verification," in Heap Analysis and Verification (HAV'07), (Braga, Portugal), pp. 81–93, March 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Sample program

```
struct pair { int a, b; };
2 struct s { struct pair *p;
              int v };
3
4 void swap(struct s **x,
           struct s **y)
\mathbf{5}
6 {
7
    struct s *t = *x;
8
  *x = *y;
9 *y = t;
10 struct pair *p = t->p;
11 t \rightarrow p = (*x) \rightarrow p;
12 (*x) - p = p;
13 }
```

14 VC	oid caller()	
15 {		
16	struct s x, y, z;	
17	struct s $*px = \&x$,	
18	*py = &y,	
19	*pz = &z	
20	//	
21	<pre>swap(&px, &py);</pre>	
22	<pre>swap(&py, &pz);</pre>	
23 }		

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 4 / 79

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Regions

Definition

Regions are sets of (structurally distinct) typed pointer expressions s. t. any pair of pointer expressions taken from **different** regions necessarily addresses **disjoint** memory areas (w.r.t the corresponding pointer types)

$$\begin{array}{l} \forall r_1, r_2 \in \mathbb{R} \text{.} r_1 \neq r_2 \implies \\ \forall p_1 \in r_1, p_2 \in r_2 \text{.} \\ ((\texttt{char } *)p_1) \big[0 \dots \texttt{sizeof}(p_1) \big] \cap \\ ((\texttt{char } *)p_2) [0 \dots \texttt{sizeof}(p_2) \big] = \emptyset \end{array}$$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 5 / 79

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

Preliminary transformations (before)

```
struct pair { int a, b; };
2 struct s { struct pair *p;
           int v ;
3
4 void swap(struct s **x,
     struct s **v)
5
6 {
7 struct s *t = *x;
* x = * y;
9 *y = t;
10 struct pair *p = t - >p;
11 t \rightarrow p = (*x) \rightarrow p;
12 (*x) - p = p;
13 }
```

```
14 void caller()
15 {
16 struct s x, y, z;
17 struct s *px = &x,
18 *py = &y,
19 *pz = &z;
20 // ...
21 swap(&px, &py);
22 swap(&py, &pz);
23 }
```

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 6 / 79

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Preliminary transformations (after)

```
struct pair { int a, b; };
 2 struct s { struct pair *p;
                  int v }:
 3
 4 struct sP { struct s* sM; };
 5 void swap(struct sP *x,
                struct sP *v)
 6
 7 {
 8
     struct s *t = x - > sM:
     x \rightarrow sM = y \rightarrow sM;
 9
10 \quad y - sM = t;
11 struct pair *p = t - p;
   t \rightarrow p = x \rightarrow sM \rightarrow p;
12
     x \rightarrow sM \rightarrow p = p;
13
14 }
```

```
15 void caller()
16 {
     struct s *x = alloca(...),
17
18
             *y = alloca(...),
             *z = alloca(...):
19
20 struct sP *px = alloca(...),
                *py = alloca(...),
21
22
                *pz = alloca(...);
   px -> sM = x;
23
    py \rightarrow sM = y;
24
   pz \rightarrow sM = z;
25
26 // ...
   swap(px, py);
27
     swap(py, pz);
28
29 }
```

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 7 / 79

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Region analysis. Initial separation. Parameter & local regions

15 V	pid caller()
16 {	
17	<pre>struct s * x = alloca(),</pre>
18	<pre>* y = alloca(),</pre>
19	<pre>* z = alloca();</pre>
20	<pre>struct sP * px = alloca(),</pre>
21	<pre>* py = alloca(),</pre>
22	<pre>* pz = alloca();</pre>
23	$px \rightarrow sM = x$;
24	py -> sM = y;
25	$pz \rightarrow sM = z;$
26	//
27	<pre>swap(px , py);</pre>
28	<pre>swap(py , pz);</pre>
29 }	

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 8 / 79

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

Functional consistency

Assume existence of a map (function) Δ from arbitrary pairs (r, f), where r — region, f — pointer field, to regions. Assign every expression of the form p->f region $\Delta(r(p), f)$, where r(p) — region assigned to p. Then we have functional consistency

$$\forall r_1, r_2 \in \mathbb{R}, f \in \mathbb{F}_p \cdot r_1 = r_2 \implies \Delta(r_1, f) = \Delta(r_2, f)$$

Unification

Unify (equate) regions on

- pointer assignments ($p_1 = p_2 \implies r(p_1) = r(p_2)$),
- pointer comparison operations $(p_1 \Diamond p_2 \implies r(p_1) = r(p_2))$,
- pointer arithmetic/array indexing $(p+i \implies r(p+i) = r(p))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Region analysis. Functional consistency & unification

15 VC	oid caller()
16 {	
17	<pre>struct s * x = alloca(),</pre>
18	<pre>* y = alloca(),</pre>
19	<pre>* z = alloca();</pre>
20	<pre>struct sP * px = alloca(),</pre>
21	<pre>* py = alloca(),</pre>
22	<pre>* pz = alloca();</pre>
23	$px \rightarrow sM = x$;
24	py -> sM = y;
25	$pz \rightarrow sM = z;$
26	//
27	<pre>swap(px , py);</pre>
28	<pre>swap(py , pz);</pre>
29 }	

イロト イポト イヨト イヨト

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 10 / 79

- 32

Polymorphic regions & equality constraint propagation

Parameter regions are treated as **polymorphic**. Equality constraints are propagated from the callee to the caller. So we can assume the existence of call site association maps $\Sigma_{f@l} : \mathbb{R} \to \mathbb{R}$, $\Sigma_{f@l}(r_{callee}) = r_{caller}$. Hence if

$$\begin{split} \Sigma_{f@l}(r_{callee1}) &= r_{caller1}, \\ \Sigma_{f@l}(r_{callee2}) &= r_{caller2}, \end{split}$$

then

$$\begin{array}{l} r_{\textit{callee1}} = r_{\textit{callee2}} \implies \\ \Sigma_{f@l}(r_{\textit{callee1}}) = \Sigma_{f@l}(r_{\textit{callee2}}) \implies \\ r_{\textit{caller1}} = r_{\textit{caller2}} \end{array}$$

New caller regions may be added during propagation

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 11 / 79

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

Equality propagation & call site association maps

15	void caller()
16	{
17	<pre>struct s * x = alloca(),</pre>
18	* y = alloca(),
19	<pre>* z = alloca();</pre>
20	<pre>struct sP * px = alloca(),</pre>
21	<pre>* py = alloca(),</pre>
22	<pre>* pz = alloca();</pre>
23	$px \rightarrow sM = x;$
24	py -> sM = y;
25	$pz \rightarrow sM = z;$
26	//
27	<pre>swap(px , py);</pre>
28	// $\Sigma_{swap@27} = \{ \bullet \mapsto \bullet, \bullet \mapsto \bullet, \bullet \mapsto \bullet, \bullet \mapsto \bullet \}$
29	<pre>swap(py , pz);</pre>
30	$// \Sigma_{swap@29} = \{ \underbrace{\bullet} \mapsto \cdot, \underbrace{\bullet} \mapsto \cdot, \underbrace{\bullet} \mapsto \cdot, \underbrace{\bullet} \mapsto \bullet \}$
31	♪
S)	LRI, May 29th, 2017 12 / 79

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

Contents

1 Basic region-based model

2 Limitations of basic region-based model

3 User-guided separation analysis

Integer models: mathematical, bitwise and composite

- **(5)** Operation semantics: checked unbounded vs. wrap-around
- 6 Real world examples: wrap-around arithmetic & casts
- Composite integer model: summary

8 Proofs as C code

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

Brief enumeration

- Prefix pointer type casts
 struct ext { struct pref p; ... } e;
 struct pref *p = (struct pref*)&e
- Discriminated unions union u { int a; char b; };
- Nested structures & arrays struct outer { ...; struct inner i; ... } o;
- Non-prefix pointer type casts / non-discriminated unions int a; char *pc = (char *)&a;
- Pointer arithmetic beyond array indexing struct outer * po = container_of(pi, struct outer, inner);
- Call site region split
 void swap(int *a, int *b) { ... } ... swap(a[0], a[1]);
- Redundant unification int *p = &a; handle(p); p = &b; handle(p);

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Prefix pointer type casts

```
struct prefix { int a; };
struct ext { struct prefix p; int b; };
//...
struct ext *e = malloc(sizeof(struct ext));
struct prefix *p = (struct prefix *)e;
p->a = 0;
e = (struct ext*)p;
e->p.a = 1;
```

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 15 / 79

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Prefix pointer type casts as hierarchical casts

• Inline prefix (base) structures

- Ignore prefix casts in region analysis (use the same region) struct prefix * p = (struct prefix *) e;
 p->a = 0; e = (struct ext*) p; e->a = 1;
- Introduce ghost map of **tags** (\mathbb{T}) for each region $(T_r : \mathbb{P} \to \mathbb{T})$
- Introduce partial order relation \leq on tags s.t. $\forall t_1, t_2 \in \mathbb{T} \cdot t_1 \leq t_2 \iff t_2 \text{ is prefix of } t_1, \therefore \text{ ext} \leq \texttt{prefix}$
- Assign exact tag to T_r on every allocation struct ext *e = malloc(sizeof(struct ext)); // $T_e[e] \leftarrow ext$
- For every cast $(t_2)p$, where $t_1 * p, t_2 \preceq t_1$, check $T_r[p] \preceq t_2$ e = (struct ext*)p; // $T_e[p] \preceq$ ext?

LRI, May 29th, 2017 16 / 79

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Handling prefix pointer type casts

```
struct prefix { int a; };
struct ext { int a; int b; };
//...
struct ext * e = malloc(sizeof(struct ext));
// T_e[e] \leftarrow ext
struct prefix * p = (struct prefix *) e;
p ->a = 0;
e = (struct ext*) p;
// T_e[p] \preceq ext?
e ->a = 1;
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Discriminated unions

Definition

Moderated union A **dynamically allocated** union is moderated iff its underlying memory is only accessed through a pointer to the corresponding union type

Definition

Discriminated union A **moderated** union is discriminated iff each read from a field of this union is preceded by the latest write to the same field

Real Linux kernel code fragments

```
static int gelic_wl_set_auth(..., union iwreq_data *data, ...) {
        struct iw_param *param = &data->param; // X
11 ...
static void igb_dump(...) {
        struct my_u0 { u64 a; u64 b; } *u0;
        union e1000_adv_rx_desc *rx_desc;
        11 ...
        u0 = (struct my_u0 *)rx_desc; // X
// ...
union nf inet addr {
                               all[4];
        __u32
        be32
                                ip;
        11 ...
};
static inline void ip_vs_addr_set(int af, union nf_inet_addr *dst,
                                    const union nf_inet_addr *src) {
        // ...
        dst->ip = src->ip;
        dst \rightarrow all[1] = 0; // X, last written field is ip
        dst -> all[2] = 0:
        dst -> all[3] = 0;
}
                                                    ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@
    Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)
                                                              LRI. May 29th. 2017 19 / 79
```

Nested structures rewriting

```
struct inner { int a, b; };
struct outer {
    int c;
    struct inner inner; };
struct outer *o =
    malloc(sizeof(struct outer));
```

```
struct inner { int a, b; };
struct outer {
    int c;
    struct inner *inner; };
struct outer *o =
    malloc(sizeof(struct outer));
o->inner =
    malloc(sizeof(struct inner));
o->inner->a = 0;
free(o->inner);
free(o);
```

free(o);

o->inner.a = 0;

- Inefficient encoding of disjointness
 (\separated(o₁,o₂) ⇒ \separated(o₁->inner,o₂->inner)
- Hard to support nested structures as union fields
- Tricky error-prone transformation with complicated semantics

Contents

- 1 Basic region-based model
- 2 Limitations of basic region-based model
- **3** User-guided separation analysis
- Integer models: mathematical, bitwise and composite
- **(5)** Operation semantics: checked unbounded vs. wrap-around
- 6 Real world examples: wrap-around arithmetic & casts
- Composite integer model: summary
- 8 Proofs as C code

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣 … のへで

Non-hierarchical casts/reinterpretation. Basic trade-off

```
int n;
n = 0;
char *pc = (char *)&n, c;
c = *pc; // X Not previously written as char
n = 1;
```

Soundness

- Functional consistency (->) and unification ensure partitioning
- To preserve partitioning for nondiscriminated access, we should unify regions of different types

Efficiency

- Separation between different types enables efficient encoding
- Unrestricted cross-type aliasing imposes inefficient byte-level encoding

Completeness

- Basic model is sound and efficient for a subset of C
- Restrict supported subset of C ⇒ cannot verify Linux kernel code

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 22 / 79

Typed model with reinterpretation (VCC2)

int n;
//
$$T = \{([\&n], int)\}$$

// $([\&n], int) \in T = \{([\&n], int)\}$?
n = 0;
// $T = \{([\&n], int)\}$
char *pc =
(char *)&n, c; // $T = \{([\&n], int)\}$
// $([\&n], int) \in T = \{([\&n], int)\}$?
// $([\&n], int) \in T = \{([\&n] + i, char) \mid 0 \le i < sizeof(int)\}$
// $([pc], char) \in T = \{([\&n] + i, char) \mid 0 \le i < sizeof(int)\}$?
// $([pc], char) \in T = \{([\&n] + i, char) \mid 0 \le i < sizeof(int)\}$?
// $([pc], char) \in T = \{([\&n] + i, char) \mid 0 \le i < sizeof(int)\}$?
// $([pc], char) \in T = \{([\&n] + i, char) \mid 0 \le i < sizeof(int)\}$?
// $([[pc], char) \in T = \{([\&n] + i, char) \mid 0 \le i < sizeof(int)\}$?
// $([[\&n], int) \in T = \{([\&n], int)\}$?
// $n = 1;$ // $T = \{([\&n], int)\}$?

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 23 / 79

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Typed model with reinterpretation (VCC2)

```
int n;
n = 0;
char *pc = (char *)&n, c;
//@ split(&n);
c = *pc;
//@ join(pc);
n = 1;
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Integrating memory safety checks with reinterpretation $IIT = \emptyset$ int *pn; pn = malloc(...); $// T = \{([pn]], int)\}$ $([pn], int) \in T = \{([pn], int)\}?$ 11 $// T = \{([pn]], int)\}$ * pn = 0;char *pc = (char *)pn, c; $// T = \{([pn]], int)\}$ $([\&n], int) \in T = \{([pn], int)\}?$ 11 // $T = \{(\llbracket pn \rrbracket + i, char) \mid 0 \le i < sizeof(int)\}$ //@ split(pn); $(\llbracket pc \rrbracket, char) \in T = \{(\llbracket pc \rrbracket + i, char) \mid 0 \le i < size of (int)\}?$ 11 c = * pc; $(\llbracket pc \rrbracket, \operatorname{char}) \in T = \{(\llbracket pc \rrbracket + i, \operatorname{char}) \mid 0 \le i < \operatorname{sizeof(int)}\}?$ 11 $// T = \{([pn]], int)\}$ //@ join(pc); $([pn], int) \in T = \{([pn], int)\}?$ 11 $// T = \{([pn]], int)\}$ * pn = 1; $([pn], int) \in T = \{([pn], int)\}? \checkmark (arrays?!)$ 11 $//T = \emptyset$ free(pn); 11 Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS) LRI, May 29th, 2017 25 / 79

A posteriori check for region analysis (assuming one type per region!) $//T = \emptyset$ int * pn ; $// T = \{([pn]], r_1)\}$ pn = malloc(...);11 $([[pn]], r_1) \in T = \{([[pn]], r_1)\}?$ * pn = 0; $// T = \{([pn], r_1]\}$ char * pc = (char *)pn, c; $// T = \{([pn]], r_1)\}$ $([[pn]], r_1) \in T = \{([[pn]], r_1)\}?$ 11 $// T = \{ ([pn]] + i, r_3) \mid 0 \le i \le \text{sizeof(int)} \}$ //@ split(pn); 11 $([pc], r_2) \in T = \{([pn] + i, r_3) \mid 0 \le i < \text{sizeof(int)}\}?$ $// T = \{ ([pn]] + i, r_3) \mid 0 < i < sizeof(int) \}$ c = * pc; 11 $([pc], r_2) \in T = \{([pn]] + i, r_3) \mid 0 \le i < \text{sizeof(int)}\}?$ $// T = \{([pn], r_1])\}$ //@ join(pc); $([pn]], r_1) \in T = \{([pn]], r_1)\}?$ 11 * pn = 1; $// T = \{([pn]], r_1)\}$ 11 $([pn]], r_1) \in T = \{([pn]], r_1)\}? \checkmark (arrays?!)$ free(pn); $1/T = \emptyset$ $T = \emptyset?$ 11

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 26 / 79

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proposal

- Use arbitrary (possibly unsound) region analysis, assigning exactly one structure tag (T) per region
 ∃t: R → T. ∀r₁, r₂ ∈ R. r₁ = r₂ ⇒ t(r₁) = t(r₂)
- Generate VCs for simultaneous check of
 - Correct reinterpretation
 - Memory safety
 - Soundness of region analysis
- Provide **additional specification constructs** to perform reinterpretation and guide region analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Drawbacks

- Memory safety, reinterpretation and region analysis alarms are combined, not distinguished by the tool ⇒
 - Region analysis has to remain simple and predictable
- Memory model invariants are **inconsistent** with common **C** and **ACSL** semantics, the user can accidentally break the invariants in preconditions
 - Invariants should be easily understandable by the user (no memory should be valid in more than one region)
- Soundness is not obvious (no region partitioning), relies on formalization of malloc/free/split/join maintaining the invariants =>
 - Formalize an invariant between reference and model semantics, prove preservation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Reference semantics

Consistency invariants

- Simplifying assumption: one int size equal to pointer size (intnat)
- Invariants:

$$\begin{array}{ll} \bullet \; \forall a, i \in \mathbb{B}^{d} \text{.} \; i < \mathcal{L}[a] \implies \mathcal{V}[a+i] & (\mathcal{L} \mapsto \mathcal{V}) \\ \bullet \; \forall a, i \in \mathbb{B}^{d} \text{.} \; 0 < i < \mathcal{L}[a] \implies \mathcal{L}[a+i] = 0 & (\mathcal{L} \mapsto \mathcal{L}) \\ \bullet \; \forall a \in \mathbb{B}^{d} \text{.} \; \mathcal{V}[a] \implies \exists i \in \mathbb{B}^{d} \text{.} \; \mathcal{L}[a-i] > i & (\mathcal{V} \mapsto \mathcal{L}) \\ \bullet \; \neg \mathcal{V}[0] & (\text{NULL}) \end{array}$$

Example

struct outer { int a; struct innter { int b, c; }; int d }
outs[2] = {{ 1, { 20, 30 }, 4 }, { 5, { 60, 70 }, 8 }};

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 30 / 79

Model semantics

Example

struct outer { int a; struct innter { int b, c; }; int d }
outs[2] = {{ 1, { 20, 30 }, 4 }, { 5, { 60, 70 }, 8 }};

< ≧ > < ≧ > ≧ < ◇ へ (~ LRI, May 29th, 2017 31 / 79

Consistency invariants

$$\begin{split} \bullet &\forall a, i \in \mathbb{B}^d, r \in \mathbb{R}. \ i < \mathcal{M}_{\mathcal{L}}^r[a] \times \mathtt{sizeof}(r) \implies \mathcal{V}alid(a+i) & (\mathcal{M}_{\mathcal{L}} \mapsto \mathcal{M}_{\mathcal{V}}) \\ \bullet &\forall a \in \mathbb{B}^d, r \in \mathbb{R}. \ \mathcal{M}_{\mathcal{L}}^r[a] > 0 \implies uniq\mathcal{L}(a, r, \mathcal{M}_{\mathcal{L}}^r[a]) & (\mathcal{M}_{\mathcal{L}} \mapsto \mathcal{M}_{\mathcal{L}}) \\ \bullet &\forall a \in \mathbb{B}^d, r \in \mathbb{R}. \ \mathcal{M}_{\mathcal{V}}^r[a] \implies \\ \exists i \in \mathbb{B}^d, r' \in \mathbb{R}. \ \mathcal{M}_{\mathcal{L}}^{r'}[a-i] \times \mathtt{sizeof}(r') > i & (\mathcal{M}_{\mathcal{V}} \mapsto \mathcal{M}_{\mathcal{L}}) \\ \bullet &\forall a \in \mathbb{B}^d, r \in \mathbb{R}. \ \mathcal{M}_{\mathcal{V}}^r[a] \implies uniq\mathcal{V}(a, r) & (\mathcal{M}_{\mathcal{V}} \mapsto \mathcal{M}_{\mathcal{V}}) \\ \neg \mathcal{V}alid(0) & (\mathtt{NULL}^r), \end{split}$$

where

$$\begin{array}{lll} \mathcal{V}alid(a) &\equiv & \exists r \in \mathbb{R} . \ \mathcal{V}alid^r(a, r), \\ \mathcal{V}alid^r(a, r) &\equiv & \exists f \in \mathbb{F}(r) . \ \mathcal{M}^r_{\mathcal{V}}\big[a - \texttt{offsetof}(f)\big] \\ uniq\mathcal{L}(a, r, l) &\equiv & \\ & \forall i \in \mathbb{B}^d, r' \in \mathbb{R} . \ i < l \times \texttt{sizeof}(r) \land (r' \neq r \lor i > 0) \implies \mathcal{M}^{r'}_{\mathcal{L}}\big[a + i\big] = 0 \\ uniq\mathcal{V}(a, r) &\equiv & \left(\forall f \in \mathbb{F}(r), r' \in \mathbb{R} . \ r' \neq r \Rightarrow \neg \mathcal{V}alid^r\left(a + \texttt{offsetof}(f), r'\right)\right) \land \\ & & (\forall i \in \mathbb{B}^d . \ 0 < i < \texttt{sizeof}(r) \implies \neg \mathcal{M}^r_{\mathcal{V}}[a + i]) \end{array}$$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 32 / 79

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Model semantics

Correspondence invariants

$$\begin{array}{ll} \left(\forall a \in \mathbb{B}^{d} \, \, \mathcal{V}[a] \implies \mathcal{V}alid(a) \right) \wedge & (\mathcal{V} \mapsto \mathcal{M}_{\mathcal{V}}) \\ \left(\forall a \in \mathbb{B}^{d} \, \, \mathcal{L}[a] > 0 \implies \exists r \in \mathbb{R} \, \, \mathcal{L}[a] = \mathcal{M}_{\mathcal{L}}^{r}[a] \times \texttt{sizeof}(r) \right) \wedge & (\mathcal{L} \mapsto \mathcal{M}_{\mathcal{L}}) \\ \left(\forall a \in \mathbb{B}^{d} \, , r \in \mathbb{R} \, \, \mathcal{M}_{\mathcal{L}}^{r}[a] > 0 \implies \mathcal{L}[a] = \mathcal{M}_{\mathcal{L}}^{r}[a] \times \texttt{sizeof}(r) \right) \wedge & (\mathcal{M}_{\mathcal{L}} \mapsto \mathcal{L}) \\ \forall a \in \mathbb{B}^{d} \, , r \in \mathbb{R} \, \, \mathcal{M}_{\mathcal{V}}^{r}[a] \implies & (\forall f \in \mathbb{F}(r) \, , \\ \mathcal{V}[a + \texttt{offsetof}(f)] \wedge & (\mathcal{M}_{\mathcal{V}} \mapsto \mathcal{V}) \\ \mathcal{M}_{f}^{r}[a] = \mathcal{B}[a + \texttt{offsetof}(f)] \right) & (\mathcal{M}_{\mathcal{B}} \rightleftharpoons \mathcal{B}) . \end{array}$$

Notation

- Reference evaluation state: S_R, ⊤ or ⊥, consistency invariants: C_R(S_R)
- Model evaluation state: S_M, ⊤ or ⊥, consistency invariants: C_M(S_R)
- Correspondence invariants: $S_{\mathcal{R}} \sim S_{\mathcal{M}}$

LRI, May 29th, 2017 33 / 79

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Core language

Syntax

Translation

- Introduce empty structure with tag void_
- Introduce **prefix field** void_ of type struct void_ to every structure, except void_

LRI, May 29th, 2017 34 / 79

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Translation

- Assume same transformations as in basic region-based model (eliminate & and * in favor of ->, wrap union fields in structures, if necessary)
- Translate unions:

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Soundness

Inference rules

- Reference semantics $OP_{\mathcal{R}} \frac{P_{\mathcal{R}}(S_{\mathcal{R}}, \overline{v})}{op(\overline{v}); \ s | \ S_{\mathcal{R}} \ \blacktriangleright \ s | \ f_{\mathcal{R}}(S_{\mathcal{R}}, \overline{v})} OP_{\mathcal{R}}^{\perp} \frac{P_{\mathcal{R}}^{\perp}(S_{\mathcal{R}}, \overline{v})}{op(\overline{v}); \ s | \ S_{\mathcal{R}} \ \blacktriangleright \ \perp} OP_{\mathcal{R}}^{\top} \frac{P_{\mathcal{R}}^{\perp}(S_{\mathcal{R}}, \overline{v})}{op(\overline{v}); \ s | \ S_{\mathcal{R}} \ \blacktriangleright \ \perp}$
- Model semantics $OP_{\mathcal{M}} \frac{P_{\mathcal{M}}(S_{\mathcal{M}},\overline{v})}{op(\overline{v}); \ s \mid S_{\mathcal{M}} \ \triangleright \ s \mid f_{\mathcal{M}}(S_{\mathcal{M}},\overline{v})} \qquad OP_{\mathcal{M}}^{\perp} \frac{P_{\mathcal{M}}^{\perp}(S_{\mathcal{M}},\overline{v})}{op(\overline{v}); \ s \mid S_{\mathcal{M}} \ \triangleright \ \perp} \\ OP_{\mathcal{M}}^{\top} \frac{P_{\mathcal{M}}^{\top}(S_{\mathcal{M}},\overline{v})}{op(\overline{v}); \ s \mid S_{\mathcal{M}} \ \triangleright \ \perp}$

• Progress:
$$\forall S, \overline{v}$$
.
either $\neg P(S, \overline{v}) = P^{\perp}(S, \overline{v})$ or $\neg P(S, \overline{v}) = P^{\top}(S, \overline{v})$

Proof

For every OP: $\forall S_{\mathcal{R}}, S_{\mathcal{M}}, \overline{v} \cdot C_{\mathcal{R}}(S_{\mathcal{R}}) \wedge C_{\mathcal{M}}(S_{\mathcal{M}}) \wedge S_{\mathcal{R}} \sim S_{\mathcal{M}} \Rightarrow$

•
$$P_{\mathcal{R}}^{\perp}(S_{\mathcal{R}}, \overline{v}) \implies P_{\mathcal{M}}^{\perp}(S_{\mathcal{M}}, \overline{v})$$

•
$$P_{\mathcal{M}}^{\top}(S_{\mathcal{M}}, \overline{v}) \implies P_{\mathcal{R}}^{\top}(S_{\mathcal{R}}, \overline{v})$$

• $P_{\mathcal{M}}(S_{\mathcal{M}},\overline{v}) \Longrightarrow P_{\mathcal{R}}(S_{\mathcal{R}},\overline{v}) \wedge C_{\mathcal{M}}(f_{\mathcal{M}}(S_{\mathcal{M}},\overline{v})) \wedge f_{\mathcal{R}}(S_{\mathcal{R}},\overline{v}) \sim f_{\mathcal{M}}(S_{\mathcal{M}},\overline{v})$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 36 / 79
Result

 $\forall S_{\mathcal{R}}, S_{\mathcal{M}}, s. \ S_{\mathcal{R}} \sim S_{\mathcal{M}} \implies s \mid S_{\mathcal{R}} \models^* \bot \implies s \mid S_{\mathcal{M}} \models^* \bot$ (sound approximation)

- Model is sound for any region analysis
- No completeness, even for earlier supported programs

Completeness

Provide user annotations

- Spurious separation between regions of the same type
 - Enforced region unification (for pointer expressions p_1, \ldots, p_n) //@ may_alias(p_1, \ldots, p_n);
- Separation between regions of different structure types
 - Reinterpretation annotations

//@ split(p); //@ join(p);

• Coarse granularity of model semantics

$$\forall a {\in} \mathbb{B}^d, r {\in} \mathbb{R}. \ \mathcal{M}^r_{\mathcal{V}}[a] \Longrightarrow \forall f {\in} \mathbb{F}(r). \ \mathcal{V}\Big[a {\rm + offsetof}(f)\Big] \quad (\mathcal{M}_{\mathcal{V}} {\mapsto} \mathcal{V})$$

• Detached fields (same transformation as elimination of &)

```
      struct s {
      int a;

      int a;
      ⇒

      int a;
      ⇒

      int d //@ detached
      int intM;

      };
      > d;

      };
      > d;

      >;
      > as 

      Mikhail Mandrykin, Alexey Khoroshiloy (ISP RAS)
      LRL May 29th, 2017
```

Proof

It's possible to *simulate* reference semantics within model semantics:

- Core language allows at most **one** memory access per statement
- Unify all regions of the same type with may_alias
- Prefix every statement with the corresponding join
- Put the corresponding **split** after every statement
- Make all fields of simple (non-composite) types detached

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

LRI. May 29th. 2017

39 / 79

Big worst-case annotation overhead

Custom security module \approx 3.5 KLoC

Preliminary estimate

- 12 out of 255 functions need additional annotations
- 31 additional annotations
 - Memory reinterpretation between integral types of different size, byte reordering (6 functions \times 4 annotations = 24)
 - Flexible array members (4 functions × 1 annotation = 4)
 - Memory reinterpretation between a structure type and an array of unsigned char (1 function × 2 annotations = 2)
 - Pointer type cast of the form (t **)p where p has type void ** and t is not void (1 function × 1 annotation = 1)
- Issues marked with

 can be solved automatically without annotations, reducing the number of annotations to 26

Future work

New annotations: region ascription :> and move

```
    Call site region split
        void swap(int *a, int *b) { ... }
        // ...
        //@ ghost int *t;
        //@ move(a[1], t);
        swap(a[0], a[1] /*@ :> t */);
    Padundant unification
```

Redundant unification

int *p = &a; handle(p); p /*@ :> &b */ = &b; handle(p /*@ :> &b */);

Can also be addressed by preliminary SSA transformation

Efficient translation of move is currently left for future work

Contents

- 1 Basic region-based model
- 2 Limitations of basic region-based model
- **3** User-guided separation analysis

4 Integer models: mathematical, bitwise and composite

- **(5)** Operation semantics: checked unbounded vs. wrap-around
- 6 Real world examples: wrap-around arithmetic & casts
- Composite integer model: summary

8 Proofs as C code

Combined linear/bitwise reasoning

```
unsigned x, y;
/*@ requires x + y <= 4 && x - y >= 2;
@ ensures x - 1 <= 0;
@*/
void f(void)
{
    x ^= y;
    y ^= x;
    x ^= y;
}</pre>
```

LRI, May 29th, 2017 43 / 79

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Combined linear/bitwise reasoning

```
unsigned x, y;
/*@ requires x + y <= 4 && x - y >= 2;
@ ensures x - 1 <= 0;
@*/
void f(void)
{
    x ^= y;
    y ^= x;
    x ^= y;
}</pre>
```

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Combined linear/bitwise reasoning

$$x + y <= 4 \&\& x - y >= 2$$

Linear reasoning (just an illustration)

$$\begin{cases} x+y \le 4, \\ x-y \ge 2 \end{cases} \iff \begin{cases} x+y \le 4, \\ -x+y \le -2 \end{cases} \iff \begin{cases} x+y \le 4, \\ 2y \le 2 \end{cases} \Rightarrow$$
$$y \le 1$$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 45 / 79

Combined linear/bitwise reasoning

```
unsigned x, y;
/*@ requires x + y <= 4 && x - y >= 2;
@ ensures x - 1 <= 0;
@*/
void f(void)
{
    x ^= y;
    y ^= x;
    x ^= y;
}</pre>
```

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Combined linear/bitwise reasoning

$$\begin{array}{c} x \quad \widehat{} = \quad y; \\ y \quad \widehat{} = \quad x; \\ x \quad \widehat{} = \quad y; \end{array}$$

Bitvector reasoning (just an illustration)

$$\begin{cases} x' = (x \uparrow y) \uparrow (y \uparrow (x \uparrow y)), \\ y' = y \uparrow (x \uparrow y) \\ \forall i \in [0, 31]. x'_i = (x_i \oplus y_i) \oplus (y_i \oplus (x_i \oplus y_i)), \\ \forall i \in [0, 31]. y'_i = y_i \oplus (x_i \oplus y_i) \end{cases} \Leftrightarrow \\ \begin{cases} \forall i \in [0, 31]. x'_i = y_i, \\ \forall i \in [0, 31]. y'_i = x_i \\ \forall i \in [0, 31]. y'_i = x_i \end{cases} & \begin{cases} x' = y, \\ y' = x \end{cases} \end{cases}$$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 47 / 79

Combined linear/bitwise reasoning

$$x + y \le 4 \&\& x - y \ge 2$$

 $x - 1 \le 0$

Combined reasoning (just an illustration)

$$\begin{cases} y \le 1, \\ x' = y, \\ y' = x \end{cases} \implies x' \le 1 \implies x' - 1 \le 0$$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 48 / 79

Combined linear/bitwise reasoning

Mathematical encoding (ACSL semantics and WP)

$$\begin{aligned} \forall x, y \in \mathbb{Z}, \\ x+y &\leq 4 \land x-y \geq 2 \land \mathbf{b}_{32}^{\mathsf{u}}(x) \land \mathbf{b}_{32}^{\mathsf{u}}(y) \implies \\ \mathbf{let} \ x_1 &= \mathbf{c}_{32}^{\mathsf{u}}(x \uparrow y) \ \mathbf{in} \\ \mathbf{let} \ y_1 &= \mathbf{c}_{32}^{\mathsf{u}}(y \uparrow x_1) \ \mathbf{in} \\ \mathbf{let} \ x_2 &= \mathbf{c}_{32}^{\mathsf{u}}(x_1 \uparrow y_1) \ \mathbf{in} \\ x_2 &- 1 \leq 0, \end{aligned}$$

where

$$\begin{array}{rcl} \mathrm{c}^{\mathrm{u}}_{32}(x) & \longrightarrow & \mathbb{Z} \to \mathtt{unsigned \ cast} \ (\underline{\mathsf{axiomatically \ defined \ on \ }\mathbb{Z}) \\ \mathrm{b}^{\mathrm{u}}_{32}(x) & \equiv & 0 \leq x < \mathtt{UINT_MAX} \\ x \, \hat{} \, y & \longrightarrow & \mathtt{bitwise \ OR \ } \underline{\mathtt{axiomatically \ defined \ on \ }\mathbb{Z}} \\ & & & & (\mathtt{as \ ininite \ sequences \ of \ bits}) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Combined linear/bitwise reasoning

Bitwise encoding (some software model checkers, e.g. CBMC, CPACHECKER)

where

$$\begin{array}{rcl} \mathbb{B}^{32} &= (_ \operatorname{BitVec} 8) & n_{32} &\equiv (_ \operatorname{bv}n \ 32) \\ \widehat{+} &= \operatorname{bvadd} & \widehat{\leq}^{\mathtt{u}} &= \operatorname{bvule} \\ \widehat{-} &= \operatorname{bvsub} & \widehat{\geq}^{\mathtt{u}} &= \operatorname{bvuge} \\ & \widehat{\oplus} &= \operatorname{bvxor} \end{array}$$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 50 / 79

Sample function

Combined linear/bitwise reasoning

Mathematical encoding (ACSL semantics and WP)

- Many quantifier instantiations needed for bitwise reasoning \Rightarrow
- Inefficient bitwise reasoning \implies
- Cannot prove post-condition x 1 <= 0 automatically

Bitwise encoding (some software model checkers, e.g. CBMC, CPACHECKER)

- Theory of bitvectors is <u>inefficient</u> for reasoning about linear inequalities ⇒
- Inefficient linear reasoning \implies
- Cannot prove post-condition x 1 <= 0 automatically

Combined linear/bitwise reasoning

Combined encoding (ASTRAVER, fork of JESSIE, not JESSIE3)

$$\begin{aligned} \forall x, y \in \mathbb{B}^{32}. \\ & i_{32}^{\mathrm{u}}(x) + i_{32}^{\mathrm{u}}(y) \leq 4 \wedge i_{32}^{\mathrm{u}}(x) - i_{32}^{\mathrm{u}}(y) \geq 2 \implies \\ & \mathbf{let} \ x_1 = x \oplus y \ \mathbf{in} \\ & \mathbf{let} \ y_1 = y \oplus x_1 \ \mathbf{in} \\ & \mathbf{let} \ x_2 = x_1 \oplus y_1 \ \mathbf{in} \\ & i_{32}^{\mathrm{u}}(x_2) - 1 \leq 0, \end{aligned}$$
where
$$& i_{32}^{\mathrm{u}}(x) : \mathbb{B}^{32} \to \mathbb{Z} \qquad \text{uninterpreted function,} \\ & \text{can use } \mathbf{bv2int/bv2nat,} \end{aligned}$$

but they are poorly supported

Combined linear/bitwise reasoning

Combined encoding

(ASTRAVER, fork of JESSIE, not JESSIE3)

Consequences for SMT solvers:

- Theory of bitvectors propagates $x_2 = y$
- Theory of uninterpreted functions propagates $i_{32}^{u}(x_2) = i_{32}^{u}(y)$
- Theory of integers propagates $\mathbf{i}^{\mathbf{u}}_{32}(y) \leq 1$
- Can prove post-condition x 1 <= 0 ($i_{32}^u(x_2) 1 \le 0$) automatically

Contents

- 1 Basic region-based model
- 2 Limitations of basic region-based model
- **3** User-guided separation analysis
- 4 Integer models: mathematical, bitwise and composite
- **5** Operation semantics: checked unbounded vs. wrap-around
- 6 Real world examples: wrap-around arithmetic & casts
- Composite integer model: summary
- 8 Proofs as C code

Combined reasoning for linear operations

```
unsigned x, y;
/*@ requires x + y <= 4 && x - y >= 2;
@ ensures x - 1 <= 0;
@*/
void f(void)
{
    x += y;
    y = x - y;
    x -= y;
}</pre>
```

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Semantics of linear operations

x += y;

- Checked unbounded semantics let $x_1 = x + y$ in ... \land $0 \le x + y \le \texttt{UINT}_MAX$
- Wrap-around semantics let $x_1 = x + y$ in ...

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Semantics of linear operations

x += y;

Combined semantics

- No overflow, unbounded semantics let $x_1 = i_{32}^u(x) + i_{32}^u(y)$ in ... \land $0 \le i_{32}^u(x) + i_{32}^u(y) \le \texttt{UINT_MAX}$
- Overflow, wrap-around semantics let $x_1 = x + \hat{y}$ in $i_{32}^{u}(x_1) = (i_{32}^{u}(x) + i_{32}^{u}(y)) \mod (\text{UINT_MAX} + 1) \land \dots,$ where mod is defined axiomatically

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Operation semantics: checked unbounded vs. wrap-around

Semantics of linear operations

x += y;

Combined semantics, conflicting alternatives

• No overflow, unbounded semantics

let $x_1 = i_{32}^{u}(x) + i_{32}^{u}(y)$ in ... \land $0 \le i_{32}^{u}(x) + i_{32}^{u}(y) \le$ UINT_MAX

- Efficient linear reasoning
- No bitwise reasoning and support for wrap-around semantics
- Overflow, wrap-around semantics

let $x_1 = x + \hat{+} y$ in $i_{32}^{u}(x_1) = (i_{32}^{u}(x) + i_{32}^{u}(y)) \mod (\text{UINT}_MAX + 1) \land \dots,$ where mod is defined axiomatically

- · Bitwise reasoning and support for wrap-around semantics
- Poor linear reasoning

Operation semantics: checked unbounded vs. wrap-around

Semantics of linear operations

x += y;

Combined semantics. Solution

- Provide <u>both</u> semantics
- Introduce new operation

• Same solution for other operations

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 59 / 79

Operation semantics: checked unbounded vs. wrap-around

Combined reasoning for linear operations

```
unsigned x, y;
/*@ requires x + y <= 4 && x - y >= 2;
@ ensures x - 1 <= 0;
@*/
void f(void)
{
    x +=/*@%*/ y;
    y = x -/*@%*/ y;
    x -=/*@%*/ y;
}
```

Can be verified <u>automatically</u> even without theory of bit-vectors (e.g. by Alt-Ergo)

LRI, May 29th, 2017 60 / 79

Contents

- 1 Basic region-based model
- 2 Limitations of basic region-based model
- **3** User-guided separation analysis
- 4 Integer models: mathematical, bitwise and composite
- **(5)** Operation semantics: checked unbounded vs. wrap-around

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

LRI. May 29th. 2017

61 / 79

- 6 Real world examples: wrap-around arithmetic & casts
- Composite integer model: summary

8 Proofs as C code

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

Real world examples: wrap-around arithmetic & casts (1

```
Linux kernel (lib/string.c, memchr)
void *memchr(const void *s, int c, size_t n)
{
        const unsigned char *p = s;
        while (n-- != 0) {
                if ((unsigned char)c == *p++) {
                         return (void *)(p - 1);
                }
        }
        return NULL:
}
```

LRI, May 29th, 2017 62 / 79

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Real world examples: wrap-around arithmetic & casts (1)

```
Linux kernel (lib/string.c, memchr)
void *memchr(const void *s, int c, size_t n)
{
        const unsigned char *p = s;
        while (n - - / * @ \% * / ! = 0) {
                 if ((unsigned char)/*@\%*/c == *p++) {
                          return (void *)(p - 1);
                 }
        }
        return NULL:
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

LRI, May 29th, 2017 63 / 79

}

- Wrap-around integer arithmetic
- Intentionally overflowing cast

Real world examples: wrap-around arithmetic & casts (2)

```
Linux kernel (lib/string.c, strncasecmp)
int strncasecmp(const char *s1, const char *s2, size_t len)
ł
        unsigned char c1, c2;
        if (!len) return 0;
        do {
                c1 = *s1++:
                c2 = *s2++;
                if (|c1|| |c2) break; if (c1 == c2) continue;
                c1 = tolower(c1); c2 = tolower(c2);
                if (c1 != c2) break;
        } while (--len):
        return (int)c1 - (int)c2;
}
```

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 64 / 79

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Real world examples: wrap-around arithmetic & casts (2)

```
Linux kernel (lib/string.c, strncasecmp)
```

```
int strncasecmp(const char *s1, const char *s2, size_t len)
{
    unsigned char c1, c2;
    if (!len) return 0;
    do {
        c1 = /*@(unsigned char %)*/*s1++;
        c2 = /*@(unsigned char %)*/*s2++;
        if (!c1 || !c2) break; if (c1 == c2) continue;
        c1 = tolower(c1); c2 = tolower(c2);
        if (c1 != c2) break;
    } while (--len);
    return (int)c1 - (int)c2; // <-- Prevent overflow on '-'</pre>
```

}

- Implicit intentionally overflowing cast
- No single integer model (math, defensive or modulo), per-operation annotations needed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Contents

- 1 Basic region-based model
- 2 Limitations of basic region-based model
- **3** User-guided separation analysis
- 4 Integer models: mathematical, bitwise and composite
- **(5)** Operation semantics: checked unbounded vs. wrap-around
- 6 Real world examples: wrap-around arithmetic & casts
- **7** Composite integer model: summary

8 Proofs as C code

Composite integer model: summary

New annotations

• Arithmetic operations

+/*@%*/

Compound assignment operators

+=/*@%*/

Postfix operators

++/*@%*/

• Explicit casts

(unsigned char) /*0%*/

Implicit casts (also checks the specified target type)
 /*@ (unsigned char %)*/

Comparison operations in code have double semantics

 $\mathbf{x} < \mathbf{y} \rightarrow \mathbf{i}_{32}^{\mathbf{u}}(x) < \mathbf{i}_{32}^{\mathbf{u}}(y) \land x \stackrel{<}{<} \mathbf{u}_{y}$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 67 / 79

```
What about logic?
unsigned x, y;
/*@ requires x + y <= 4 && x - y >= 2;
  @ ensures (x & 2) == 0;
  @*/
void f(void)
ſ
  x +=/*0\%*/v;
  v = x - / * @ % * / v;
  x = /*0\% */ v;
}
```

Can't prove the function directly, need auxiliary assertions \implies need bitwise operations in logic

Typing

```
unsigned x, y;
int z;
```

In ACSL: implicit casts to integer (\mathbb{Z}) for every term

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 69 / 79

Bounded integer operations in logic

Typing

unsigned x, y; int z; In modified ACSL $(x, y, z \in \mathbb{B}^{32})$:

- implicit cats to integer (\mathbb{Z}) on arithmetic operations $x + y \rightarrow i_{32}^{u}(x) + i_{32}^{u}(y), \quad x + z \rightarrow i_{32}^{u}(x) + i_{32}^{u}(z)$
- precise matching of types on <u>bitwise</u> and <u>wrap-around</u> operations
- numeric constants are casted implicitly, if in the range $x + \% 1 \rightarrow x + 1_{32} 1 + \% 1 \rightarrow typing error$
- comparison operations are "ad-hoc polymorphic", i.e. semantics depend on the type of the operands $x < 1 \rightarrow x \in {}^{u} 1_{32}$, $x < (\mathbb{Z}) 1 \rightarrow i_{32}^{u}(x) < 1$

Bounded integer operations in logic

Auto-instantiated axiomatic definitions

```
unsigned x, y;
/*@ requires x + y <= 4 && x - y >= 2;
  @ ensures (x & 2) == 0;
  @*/
void f(void)
{
 x += /*0\% */ y;
  y = x - / * @ % * / y;
 x = /*0\% */ y;
  /*@ assert x <= (integer)1; */</pre>
  /*@ assert x <= 1; */
}
What about auto-instantiating axiom
\forall unsigned x; x <= 1 <==> x <= (integer) 1;</pre>
for every occurrence of =>?
```

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

```
LRI, May 29th, 2017 71 / 79
```

Solution using ghost code

```
unsigned x, y;
/*@ requires x + y <= 4 && x - y >= 2;
  @ ensures (x & 2) == 0;
  @*/
void f(void)
Ł
  x += /*0\% */ y;
  y = x - / * @ % * / y;
  x = /*0\% */ y;
  //@ ghost int b = x <= 1;</pre>
  /*@ assert b; */
}
```

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで
Contents

- 1 Basic region-based model
- 2 Limitations of basic region-based model
- **3** User-guided separation analysis
- 4 Integer models: mathematical, bitwise and composite
- **(5)** Operation semantics: checked unbounded vs. wrap-around
- 6 Real world examples: wrap-around arithmetic & casts
- Composite integer model: summary

8 Proofs as C code

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Proofs as C code

Advantages

Shallower learning curve

no need to study complex reasoning tools e.g. Coq)

Maintainability

code and proofs in the same codebase

Simpler proofs

reuse of the translation engine (integer and memory models), more capable decision procedures

Disadvantages

- Bloating specification language (ACSL) with many features would make it more complicated
- Duplicated functionality COQ may be still needed for some complex proofs, e.g. existing
- Only suitable for deductive verification plugins
- Poorer reproducibility of proofs (on different ATP versions, different machines)

LRI, May 29th, 2017 74 / 79

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

What's needed

- ☑ Annotations in ghost code (/@ ... @/)
- \Box Allow logic types in ghost code
- Lemma functions with multiple labels
- \Box Axiomatic inclusion/cloning with type and logic substitution
- □ Support auto-instantiation of statements (axioms, lemmas) triggered by logic symbol application

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Results so far

• 🗹 Tricky average computation

(a & b) + ((a ^ b) >> 1U)

- 🗹 Kernighan's bitcount
- Gray codes (SWAR decoding and properties)
- \Box n queens

(from the paper Verifying Two Lines of C with WHY3)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Summary

- Linux kernel code make extensive use of generic pointer casts, pointer arithmetic, <u>bitwise</u> and wrap-around operations
- Generic memory handling can be supported by user-guided separation analysis without losing efficiency relative to the region-based model
- Support for composite integer model combined with ghost functions allows to efficiently reason about non-trivial code fragments involving bitwise operations without the use of external interactive tools (e.g. COQ or ISABELLE)
- Further ACSL extensions are needed for more complex specifications (e.g. *n* queens) and better support for framing (moving pointer sets between regions)

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - の々で

ACSL modifications

- Reinterpretation annotations (split, join)
- Unification annotation (may_alias)
- Detached (addressable) fields (detached)
- More annotations for better framing (?)
- Wrap-around annotations for linear operations (/*@%*/) and implicit casts (/*@(t %)*/)
- Wrap-around operations in logic (+%, -%, /%, etc.)
- Nested annotations (/@ ... @/)
- Parametrized axiomatic inclusion

$$\{ \dots \text{ include } A \{ \text{ type } t = u; \\ \text{logic } t f (\overline{x}) = g (\overline{x}); \dots \}$$

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

LRI, May 29th, 2017 78 / 79

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Contacts

ISP RAS

Mikhail Mandrykin email: mandrykin@ispras.ru

Alexey Khoroshilov email: khoroshilov@ispras.ru

Mikhail Mandrykin, Alexey Khoroshilov (ISP RAS)

(日) (同) (日) (日) (日)

LRI, May 29th, 2017

79 / 79