

Institute for System Programming of the Russian Academy of Sciences

Alexey Khoroshilov Mikhail Mandrykin

Specifying and proving
correctness of Linux kernel
components with ACSL

Linux Verification Center

founded in 2005
● OLVER Program
● Linux Standard Base Infrastructure Program
● Linux Driver Verification Program
● Linux File System Verification Program
● Linux Deductive Verification

Historical Perspective

● Teaching Floyd-Hoare methods (2007-...)
● used Caduceus for course practice
● then Frama-C + Jessie

● 100 hours student practice (2008-2013)
Typical verification target: sort or arrays

● Part 1: Model-based Testing
● 100% line coverage required

● Part 2: Deductive Verification
● Caduceus/Frama-C+Jessie
● PVS interactive theorem prover if required

// number of nonempty elements is evaluated by
// finding the first empty element of the array

 // returns a number of nonempty elements of range array

Historical Perspective (2)
commit 834b40380e93e36f1c9b48ec1d280cebe3d7bd8c
Author: Alexey Khoroshilov <khoroshilov@ispras.ru>
Date: Thu Nov 11 14:05:14 2010 -0800

 kernel/range.c: fix clean_sort_range() for the case of full array

 clean_sort_range() should return a number of nonempty elements of range
 array, but if the array is full clean_sort_range() returns 0.

 The problem is that the number of nonempty elements is evaluated by
 finding the first empty element of the array. If there is no such element
 it returns an initial value of local variable nr_range that is zero.

 The fix is trivial: it changes initial value of nr_range to size of the
 array.

 The bug can lead to loss of information regarding all ranges, since
 typically returned value of clean_sort_range() is considered as an actual
 number of ranges in the array after a series of add/subtract operations.

 Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
 Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Thorough Verification of
Linux Security Module

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC, VFS)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

Policy
Utilities

Linux
Security
Module

Security
Policy

Request

Response

LSM makes all
decisions whether
grant access or not

● Custom security policy model (MROSL-DP)
● Lattice-based mandatory access control (MAC)
● Mandatory integrity control (MIC)
● Role-based access control (RBAC)

● Custom Linux Security Module (LSM)
implementation

● Astra Linux Special Edition

Thorough Verification of
Linux Security Module

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC, VFS)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

Policy
Utilities

Linux
Security
Module

Security
Policy

Request

Response

LSM makes all
decisions whether
grant access or not

Thorough Verification of
Linux Security Module

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC, VFS)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

Policy
Utilities

Linux
Security
Module

Security
Policy

Request

Response

MROSL-DP
model

Thorough Verification of
Linux Security Module

● Target code: Custom Linux Security Module
● Hardware independent
● Sometimes verification unfriendly
● Out of our control

● Properties to prove:
● Absence of run-time errors
● Compliance to MROSL-DP functional specifications

● Assumptions
● Linux kernel core conforms with its specifications

● It is not target to prove
● No concurrent access to data

Project Settings

Tools?

● Frama-C with Jessie plugin
● open source
● WP was not mature at that time

But ...

● Low level memory operations
● Arithmetics with pointers to fields of

structures (container_of)
● Prefix structure casts
● Reinterpret casts

● Integer overflows and bit operations
● Complex functionality requires manual proof
● ...

Specifying and Proving Correctness of Linux
Kernel Components with ACSL

Operations on bounded integers

Mikhail Mandrykin

ISP RAS

May 30th, 2017

May 30th, 2017 1 / 21

Real world examples: integer models

Linux kernel (lib/string.c, memcmp)

int memcmp(const void *cs, const void *ct, size_t count)

{

const unsigned char *su1, *su2;

int res = 0;

for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count --)

if ((res = *su1 - *su2) != 0)

break;

return res;

}

Overflow checks for arithmetic operations

• · — integer arithmetic operations

• No overflow, both checks pass

• No implicit truncation

• Use general “defensive” integer model

Mikhail Mandrykin (ISP RAS) May 30th, 2017 2 / 21

Real world examples: integer models

Linux kernel (lib/string.c, memset)

void *memset(void *s, int c, size_t count)

{

char *xs = s;

while (count --)

*xs++ = c;

return s;

}

Overflow checks for arithmetic operations

• Intentional overflow in decrement (--),
wrap-around semantics

• Intentional implicit truncation of int to char in
assignment (=)

• Use special “modulo” integer model

Mikhail Mandrykin (ISP RAS) May 30th, 2017 3 / 21

Real world examples: integer models
Linux kernel (lib/string.c, strncasecmp)
int strncasecmp(const char *s1, const char *s2, size_t len)

{

unsigned char c1, c2;

if (!len) return 0;

do {

c1 = *s1++;

c2 = *s2++;

if (!c1 !c2) break; if (c1 == c2) continue;

c1 = tolower(c1); c2 = tolower(c2);

if (c1 != c2) break;

} while (--len);

return (int)c1 - (int)c2;

}

Overflow checks for arithmetic operations
• Intentional implicit conversion of char to unsigned char in

assignment (=)

• If we accidentally put char as the return type (int), we can get
erroneous implicit truncation of the result

• We want the overflow to be reported on the implicit truncation (char)

• Which integer model should we use?

Mikhail Mandrykin (ISP RAS) May 30th, 2017 4 / 21

Our solution: Composite integer model

Defensive by default, new annotations

• Arithmetic operations

+/*@ %*/

• Compound assignment operators

+=/*@ %*/

• Postfix operators

++/*@ %*/

• Explicit casts

(unsigned char)/*@ %*/

• Implicit casts (also checks the specified target type)

/*@ (unsigned char %)*/

Comparison operations in code have double semantics

x < y → (integer)x < (integer)y && x < y

Mikhail Mandrykin (ISP RAS) May 30th, 2017 5 / 21

Our solution: Composite integer model

Linux kernel (lib/string.c, memset)

void *memset(void *s, int c, size_t count)

{

char *xs = s;

while (count -- /*@ %*/)

xs++ = /@ (char %)*/ c;

return s;

}

Explicitly mark intentional overflow and intentional implicit
truncation

Mikhail Mandrykin (ISP RAS) May 30th, 2017 6 / 21

Our solution: Composite integer model

Linux kernel (lib/string.c, strncasecmp)
int strncasecmp(const char *s1, const char *s2, size_t len)

{

unsigned char c1, c2;

if (!len) return 0;

do {

c1 = /*@ (unsigned char %)*/ *s1++;

c2 = /*@ (unsigned char %)*/ *s2++;

if (!c1 !c2) break; if (c1 == c2) continue;

c1 = tolower(c1); c2 = tolower(c2);

if (c1 != c2) break;

} while (--len);

return (int)c1 - (int)c2;

}

Explicitly mark intentional implicit truncation, but not the subtraction (-)

Mikhail Mandrykin (ISP RAS) May 30th, 2017 7 / 21

Composite integer model

Combined reasoning for linear operations

Artificial example 1

unsigned x, y;

/*@ requires x + y <= 4 && x - y >= 2;

@ ensures x - 1 <= 0;

@*/

void f(void)

{

x += y;

y = x - y;

x -= y;

}

Mikhail Mandrykin (ISP RAS) May 30th, 2017 8 / 21

Composite integer model

Combined reasoning for linear operations

Artificial example 1

unsigned x, y;

/*@ requires x + y <= 4 && x - y >= 2;

@ ensures x - 1 <= 0;

@*/

void f(void)

{

x +=/*@ %*/ y;

y = x -/*@ %*/ y;

x -=/*@ %*/ y;

}

• Using linear reasoning we can infer \at(y, Pre) - 1 <= 0

• Using bitwise reasoning we can infer
\at(x, Post) == \at(y, Pre)

• Combined model allows to prove the post-condition
automatically

Mikhail Mandrykin (ISP RAS) May 30th, 2017 9 / 21

Composite integer model

What about logic?

Artificial example 2

unsigned x, y;

/*@ requires x + y <= 4 && x - y >= 2;

@ ensures (x & 2) == 0 ;

@*/

void f(void)

{

x +=/*@ %*/ y;

y = x -/*@ %*/ y;

x -=/*@ %*/ y;

}

Can’t prove the post-condition automatically, need auxiliary assertions, so

need bitwise semantics operations in logic

Mikhail Mandrykin (ISP RAS) May 30th, 2017 10 / 21

Composite integer model

Typing annotations

• Bitvector operations in logic

&, |, ^, +%, -%, *%, (int %), ...

• New typing rules to support bit-vector operations in logic
• Backward-compatible implicit casts to integer (Z) for

arithmetic operations

+, -, *, /, %

• Precisely matching integer types for bit-vector operations

+%, -%, *%, /%, %%, (int %)

&, |, ~, ^

• Integer constants are implicitly casted to bitvectors, if in range

x +% 1

• Semantics of comparisons is ad-hoc, i.e. depends on the types
of operands

Mikhail Mandrykin (ISP RAS) May 30th, 2017 11 / 21

Composite integer model

Auto-instantiated axiomatic definitions

Artificial example 2

unsigned x, y;

/*@ requires x + y <= 4 && x - y >= 2;

@ ensures (x & 2) == 0;

@*/

void f(void)

{

x += /*@ %*/ y;

y = x -/*@ %*/ y;

x -= /*@ %*/ y;

/*@ assert x <= (integer)1; */

/*@ assert x <= 1; */

}

What about auto-instantiating axiom
\forall unsigned x; x <= 1 <==> x <= (integer) 1;

for every occurrence of <=?
Mikhail Mandrykin (ISP RAS) May 30th, 2017 12 / 21

Composite integer model

Artificial example 2

Solution using ghost code

unsigned x, y;

/*@ requires x + y <= 4 && x - y >= 2;

@ ensures (x & 2) == 0;

@*/

void f(void)

{

x += /*@ %*/ y;

y = x -/*@ %*/ y;

x -= /*@ %*/ y;

//@ ghost int b = x <= 1;

/*@ assert b; */

}

Mikhail Mandrykin (ISP RAS) May 30th, 2017 13 / 21

Composite integer model

A bit-twiddling hack

unsigned average(unsigned a, unsigned b)

{

return (a & b) + ((a ^ b) >> 1U);

}

Mikhail Mandrykin (ISP RAS) May 30th, 2017 14 / 21

Composite integer model

A bit-twiddling hack: proof

/*@ ghost

@ //@ ensures a + b == (a ^ b) + (a & b) * 2;

@ void Sum_as_xor_plus_and(unsigned a, unsigned b) {

@ int aux = (a ^ b) + ((unsigned long long)(a & b) << 1ULL) ==

@ (unsigned long long)a + b;

@ }

@ */

/*@ ensures \result == (a + b) / 2;

@ */

unsigned average(unsigned a, unsigned b)

{

//@ ghost Sum as xor plus and(a, b);

return (a & b) + ((a ^ b) >> 1U);

}

Mikhail Mandrykin (ISP RAS) May 30th, 2017 15 / 21

Proof management

Lemma functions
/*@ ghost

@ //@ ensures a + b == (a ^ b) + (a & b) * 2;

@ void Sum_as_xor_plus_and(unsigned a, unsigned b) { ... }

@ */

m
//@ lemma Sum as xor plus and: \forall unsigned a, b; a + b == (a ^ b) + (a & b) * 2;

Parameterized axiomatic inclusion
/*@ axiomatic Matrix {

@ type t; type index; type element;

@ logic t const(element e);

@ logice get(t map, index i1, index i2); ...

@ } */

/*@ axiomatic List {

@ type t; type element;

@ logic t empty;

@ logic t add(t list, element e); ...

@ } */

⇑
/*@ axiomatic Nqueens {

@ type solution;

@ include Map {

@ type t = solution;

@ type index = integer;

@ type element = boolean;

@ }

@ include List {

@ type t = solutions;

@ type element = solution;

@ }

@ ...

@ }

@ */

• Useful for complex specifications

Mikhail Mandrykin (ISP RAS) May 30th, 2017 16 / 21

Proofs as C code

Advantages
• Shallower learning curve

no need to study complex reasoning tools e.g. Coq)

• Maintainability
code and proofs in the same codebase

• Simpler proofs
reuse of the translation engine (integer and memory models),

more capable decision procedures

Disadvantages
• Bloating specification language (ACSL) with many features

would make it more complicated

• Duplicated functionality
Coq may be still needed for some complex proofs, e.g. existing

• Only suitable for deductive verification plugins

• Poorer reproducibility of proofs (on different ATP versions,

different machines)
Mikhail Mandrykin (ISP RAS) May 30th, 2017 17 / 21

Proofs as C code

What’s needed

• �3 Annotations in ghost code (/@ ... @/)

• � Allow logic types in ghost code

• � Lemma functions with multiple labels

• � Parameterized axiomatic inclusion

• � Auto-instantiation of statements (axioms, lemmas)
triggered by logic symbol applications

Mikhail Mandrykin (ISP RAS) May 30th, 2017 18 / 21

Proofs as C code

Results so far

• �3 Tricky average computation

(a & b) + ((a ^ b) >> 1U)

• �3 Kernighan’s bitcount

• �3 Gray codes (SWAR decoding and properties)

• � n queens
(from the paper Verifying Two Lines of C with Why3)

Mikhail Mandrykin (ISP RAS) May 30th, 2017 19 / 21

Summary

• Linux kernel code makes extensive use of bitwise and
wrap-around operations

• Support for composite integer model combined with ghost
functions allows to efficiently reason about non-trivial code
fragments involving bitwise operations without the use of
external interactive tools (e.g. Coq or Isabelle)

• Further ACSL extensions are needed for more complex
specifications (e.g. n queens)

Mikhail Mandrykin (ISP RAS) May 30th, 2017 20 / 21

AstraVer Toolset

● Frama-C
● AstraVer plugin (fork of Jessie)
● Why3

● Open source:
● http://linuxtesting.org/astraver
● http://forge.ispras.ru/projects/astraver/wiki

Conclusions

● Linux kernel code can be deductively
verified with Frama-C/AstraVer

● under some assumptions
● tool improvements required

Institute for System Programming of the Russian Academy of Sciences

Thank you!

http://linuxtesting.org/astraver

