LinuxTesting
«0rg

Specifying and proving
correctness of Linux kernel
components with ACSL

. Alexey Khoroshilov Mikhail Mandrykin

ISP[TE

Institute for System Programming of the Russian Academy of Sciences

P LinuxTesting
=0Org

LinuxTesting
Linux Verification Center =0OFr9g

Institute for System Programming of Russian Academy of Sciences

- RS
VR N R LinuXx

founded in 2005

* OLVER Program

* Linux Standard Base Infrastructure Program
* Linux Driver Verification Program

*Linux File System Verification Program

* Linux Deductive Verification

) RAS)

Historical Perspective

* Teaching Floyd-Hoare methods (2007-...)

* used Caduceus for course practice
* then Frama-C + Jessie

* 100 hours student practice (2008-2013)

Typical verification target: sort or arrays
* Part 1. Model-based Testing
* 100% line coverage required

* Part 2: Deductive Verification
* Caduceus/Frama-C+Jessie
* PVS interactive theorem prover if required

) RAS)

r LinuxTesting
=0rg

// returns a number of nonempty elements of range array

int clean_sort_range(struct range *range, int az)

{

int i, j, k = az - 1, nr_range = 0;

for (i =0; 1 < k; i++) {
if (range[i].end)
continue;
for (j =k; j>1; j--) {
if (range[j].end) {
k = 3;
break;
1
}
if (j == 1)
break:;
range[i].start
range[i].end
range[k].start
range[k].end

L]

range[k].start;
range[k].end;
e;

0;

k
/* count it */

for (1 = 0; 1 < az; i++) { .
if (irange[i].end) { Il number of nonempty elements is evaluated by

nr_range = i; [/l finding the first empty element of the array
break:

}

/* sort them */
sort(range, nr_range, sizeof(struct range), cmp_range, NULL);

return nr_range;

8 LinuxTesting
=0Org

Historical Perspective (2)

commit 834b40380e93e36f1c9b48ec1d280cebe3d7bd8c
Author: Alexey Khoroshilov <khoroshilov@ispras.ru>
Date: Thu Nov 11 14:05:14 2010 -0800

kernel/range.c: fix clean_sort_range() for the case of full array

clean_sort_range() should return a number of nonempty elements of range
array, but if the array is full clean_sort_range() returns O.

The problem is that the number of nonempty elements is evaluated by
finding the first empty element of the array. If there is no such element
it returns an initial value of local variable nr_range that is zero.

The fix is trivial: it changes initial value of nr_range to size of the
array.

The bug can lead to loss of information regarding all ranges, since
typically returned value of clean_sort_range() is considered as an actual
number of ranges in the array after a series of add/subtract operations.

Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

) RAS)

Il LinuxTesting
=0Org

B
Thorough Verification of

Linux Security Module

User-space
Applications
(S)petrating System Utilities System Policy
oystem Libraries Services Utilities
A
. RusBITech .
! Signals,
Special System Memory updates,
File Systems Calls Scheduling,
Kernel Kernel-space |/
_ _ Security
Kernel Modules Kernel Threads Device Drivers Policy
(i
Request Linux LSM makes all
Kernel Core (mmu, scheduler, IPC, VFS) < Security decisions whether
Module
Response grant access or not
? Interrupts, DMA ¢ IO Memory/IO Ports
Hardware

) RAS)

Thorough Verification of

Linux Security Module

» Custom security policy model (MROSL-DP)
- Lattice-based mandatory access control (MAC)
» Mandatory integrity control (MIC)
» Role-based access control (RBAC)

» Custom Linux Security Module (LSM)
Implementation

- Astra Linux Special Edition //\

RusBITech

) RAS)

Il LinuxTesting
=0Org

B
Thorough Verification of

Linux Security Module

User-space
Applications
(S)petrating System Utilities System Policy
oystem Libraries Services Utilities
A
. RusBITech .
! Signals,
Special System Memory updates,
File Systems Calls Scheduling,
Kernel Kernel-space |/
_ _ Security
Kernel Modules Kernel Threads Device Drivers Policy
(i
Request Linux LSM makes all
Kernel Core (mmu, scheduler, IPC, VFS) < Security = decisions whether
Module
Response grant access or not
? Interrupts, DMA ¢ IO Memory/IO Ports
Hardware

) RAS)

Thorough Verification of

Linux Security Module

User-space
Applications
(S)petrating System Utilities System Policy
oystem Libraries Services Utilities
. RusBITech .
! Signals,
Special System Memory updates,
File Systems Calls Scheduling,
Kernel Kernel-space |/
_ . Security
Kernel Modules Kernel Threads Device Drivers Policy |
g
Request Linux 3 MROSL-DP
- :
Kernel Core (mmu, scheduler, IPC, VFS) I Security
’ "
Response | Module | model
? Interrupts, DMA ¢ IO Memory/IO Ports

Hardware

) RAS)

Project Settings

* Target code: Custom Linux Security Module
* Hardware independent
* Sometimes verification unfriendly
* Out of our control

* Properties to prove:
* Absence of run-time errors
* Compliance to MROSL-DP functional specifications

* Assumptions

* Linux kernel core conforms with its specifications
* It is not target to prove

* No concurrent access to data

) RAS)

o HneTeere .
Tools?

* Frama-C with Jessie plugin
° open source
* WP was not mature at that time

Il LinuxTesting
=0Org

But ...

* Low level memory operations

* Arithmetics with pointers to fields of
structures (container_of)

* Prefix structure casts
* Reinterpret casts

* Integer overflows and bit operations
* Complex functionality requires manual proof

) RAS)

ISP[TH

Specifying and Proving Correctne:
Kernel Components with A

Operations on bounded integer

Mikhail Mandrykin
ISP RAS

May 30th, 2017

Real world examples: ineger modls

Linux kernel (1ib/string.c, memcmp)

int memcmp(const void *cs, const void *ct, size_t count)
{
const unsigned char *sul, *su2;
int res = 0;
for (sul = cs, su2 = ct; 0 < count; ++sul, ++su2, count ——)
if ((res = *sul - *su2) != 0)
break;
return res;

Overflow checks for arithmetic operations

e - — integer arithmetic operations

No overflow, both checks pass

No implicit truncation

Use general “defensive’ integer model

Mikhail Mandrykin (ISP RAS) May 30th, 2017 2 /21

Real world examples: ineger models

Linux kernel (1ib/string.c, memset)

void *memset(void *s, int c, size_t count)

{
char *xs = s;
while (count —-)
xxst+t = C;
return s;
}

Overflow checks for arithmetic operations

e Intentional overflow in decrement (—-),
wrap-around semantics

¢ Intentional implicit truncation of int to char in
assignment (=)
Use special “modulo” integer model

Mikhail Mandrykin (ISP RAS) May 30th, 2017 3 /21

Real world examples: ineger modls

Linux kernel (1ib/string.c, strncasecmp)
int strncasecmp(const char *sl, const char *s2, size_t len)
{
unsigned char cl, c2;
if (!len) return 0;
do {
cl = *sl++;
c2 = *s2++;
if (!'cl !c2) break; if (cl == c2) continue;
cl = tolower(cl); c2 = tolower(c2);
if (c1 != c2) break;
} while (--len);
return (int)cl - (int)c2;

}
Overflow checks for arithmetic operations
e [ntentional implicit conversion of char to unsigned char in
assignment (=)
e |f we accidentally put char as the return type (int), we can get
erroneous implicit truncation of the result
® We want the overflow to be reported on the implicit truncation (| char)
e Which integer model should we use?

Mikhail Mandrykin (ISP RAS) May 30th, 2017 4 /21

Our soluton: Composite integer model NN

Defensive by default, new annotations

e Arithmetic operations
+/*Q)%/
Compound assignment operators
+=/*Q%*/
Postfix operators
++/*%Q%*/
Explicit casts
(unsigned char) /*@%*/
Implicit casts (also checks the specified target type)
/#@ (unsigned char %) */

Comparison operations in code have double semantics
x <y — (integer)x < (integer)y && x <y

Mikhail Mandrykin (ISP RAS) May 30th, 2017 5 /21

*xXs++

Our solution: Composite integer model

Linux kernel (1ib/string.c, memset)

void *memset(void *s, int c, size_t count)

{

char *xs = s;

while (count —- /*@%%*/)
return s;

}

truncation

/*@ (char %) */c;

Explicitly mark intentional overflow and intentional implicit
Mikhail Mandrykin (ISP RAS)

QG

May 30th, 2017 6 /21

Our soluton: Composite integer model N

Linux kernel (1ib/string.c, strncasecmp)
- strncasecmp(const char *sl, const char *s2, size_t len)

{
unsigned char cl, c2;
if (!len) return O;
do {
cl = /*@(unsigned char %) */*sl++;
c2 = /*@(unsigned char 7,)*/*s2++;
if (!cl !'c2) break; if (cl == c2) continue;
cl = tolower(cl); c2 = tolower(c2);
if (c1 != c2) break;
} while (--len);
return (int)cl - (int)c2;
}

Explicitly mark intentional implicit truncation, but not the subtraction (-)

o = - = =) Q(
Mikhail Mandrykin (ISP RAS) May 30th, 2017 7 /21

Composite integer model L

Combined reasoning for linear operations
Artificial example 1

unsigned x, ¥y;
/*@ requires x + y <= 4 & x - y >= 2;
@ ensures x - 1 <= 0;

o/
void f(void)
{
X += y;
y=x-7y;
X -=y;
}

o <& = = z 9ac

Mikhail Mandrykin (ISP RAS) May 30th, 2017 8 /21

Composite integer model L

Combined reasoning for linear operations

Artificial example 1

unsigned x, y;

/#@ requires x +y <= 4 && x - y >= 2;
@ ensures x - 1 <= 0;
ox/

void f(void)

{
X +=/%Q%*/ y;

=x -/*%0%*/ y;

X —=/*Q%*/ y;

<

Using linear reasoning we can infer \at(y, Pre) - 1 <= 0
e Using bitwise reasoning we can infer

\at(x, Post) == \at(y, Pre)
e Combined model allows to prove the post-condition
automatically

o = = =) Q(
Mikhail Mandrykin (ISP RAS) May 30th, 2017 9 /21

Composite integer model L

What about logic?

Artificial example 2

unsigned X, y;
/*Q@ requires x + y <=4 && x - y >= 2;
@ ensures (x & 2) == 0 ;
o*/
void f(void)
{
X +=/*%Q*/ y;
y = x —/*0}*/ y;
X —=/*0%*/ y;
}

Can't prove the post-condition automatically, need auxiliary assertions,

so
need bitwise semantics operations in logic

= VA

Mikhail Mandrykin (ISP RAS) May 30th, 2017 10 / 21

Composite integer model L

Typing annotations

e Bitvector operations in logic
&, I) ”: +%s _%’ *%, (1nt %) >
e New typing rules to support bit-vector operations in logic

e Backward-compatible implicit casts to integer (Z) for
arithmetic operations

+ s - b * b / b %
e Precisely matching integer types for bit-vector operations
%y =hy *hy /hy Wh, (int %)
&) | b - b -
e Integer constants are implicitly casted to bitvectors, if in range
x +% 1
e Semantics of comparisons is ad-hoc, i.e. depends on the types
of operands

Mikhail Mandrykin (ISP RAS) May 30th, 2017 11 /21

Composite integer model L

Auto-instantiated axiomatic definitions
Artificial example 2

unsigned x, ¥y;
/*@ requires X + y <=4 && x - y >= 2;
@ ensures (x & 2) == 0;
o*/
void f(void)
{
X += /*¥@%*/ v;
y = x —/*0}*/ y;
X -= /*%C*/ v;
/#0@ assert x <= (integer)l; */
/*#@ assert x <= 1; */

3

What about auto-instantiating axiom
\forall unsigned x; x <= 1 <==> x <= (integer) 1;
for every occurrence of <=7 Or B> <=><=» T 9

Q \:Q/
Mikhail Mandrykin (ISP RAS) May 30th, 2017 12 /21

Composite integer model L

Artificial example 2
Solution using ghost code

unsigned x, ¥y;

/#0@ requires x +y <= 4 && x -y >= 2;
©@ ensures (x & 2) == 0;
o*/

void f(void)

{

X += /*¥Q@%*/ y;

y = x —/*¥C%*/ y;

X -= /*Q@%*/ y;

//@ ghost int b = x <= 1;
/*0@ assert b; */

o = = = E 9ace
Mikhail Mandrykin (ISP RAS) May 30th, 2017 13 /21

Composite integer model L

A bit-twiddling hack

unsigned average(unsigned a, unsigned b)

{

return (a & b) + ((a =~ b) >> 10);
}

=] 5 = = £ DA
Mikhail Mandrykin (ISP RAS)

May 30th, 2017 14 /21

Composite integer model L

A bit-twiddling hack: proof

/*@ ghost
@ //@ ensures a + b == (a ~ b) + (a & b) * 2;
@ void Sum_as_xor_plus_and(unsigned a, unsigned b) {
@ int aux = (a ~ b) + ((unsigned long long)(a & b) << 1ULL) ==
@ (unsigned long long)a + b;
@}
ox/
/%0 ensures \result == (a + b) / 2;
ox/
unsigned average(unsigned a, unsigned b)
{
//@ ghost Sum_as_xor_plus_and(a, b);
return (a & b) + ((a = b) >> 10);
}

o & = = = 9aQ

Mikhail Mandrykin (ISP RAS) May 30th, 2017 15 /21

Proof management

Lemma functions

/*@ ghost
@ //@ ensures a + b == (a "~ b) + (a & b) * 2;
© void Sum_as_xor_plus_and(unsigned a, unsigned b) { ... }

ex*/
(3

//@ lemma Sum_as_xor_plus.and: \forall unsigned a, b; a + b == (a ~ b) + (a & b) * 2;

Parameterized axiomatic inclusion

/#@ axiomatic Matrix { /#@ axiomatic List {
e type t; type index; type element; 4 type t; type element;
@ logic t const(element e); @ logic t empty;
@ logice get(t map, index il, index i2); ... @ logic t add(t list, element e); ...
@} */ e } x/

/#@ axiomatic Nqueens { @ include List {
@ type solution; @ type t = solutionms;
@ include Map { @ type element = solution;
9 type t = solution; o }
e type index = integer; @
e type element = boolean; @ }
e } Q@ */

e Useful for complex specifications

o = = E QC
Mikhail Mandrykin (ISP RAS) May 30th, 2017 16 / 21

it
<

Proofs as C code —

Advantages
e Shallower learning curve
no need to study complex reasoning tools e.g. CoQ)
e Maintainability
code and proofs in the same codebase
e Simpler proofs
reuse of the translation engine (integer and memory models),
more capable decision procedures
Disadvantages
o Bloating specification language (ACSL) with many features
would make it more complicated
o Duplicated functionality
CoQ may be still needed for some complex proofs, e.g. existing
o Only suitable for deductive verification plugins

o Poorer reproducibility of proofs (on different ATP versions,

different machines)
Mikhail Mandrykin (ISP RAS) May 30th, 2017 17 / 21

Proofsas Ceode

What's needed

@ Annotations in ghost code (/@ ... /)
(1 Allow logic types in ghost code

e [Lemma functions with multiple labels

J Parameterized axiomatic inclusion

O Auto-instantiation of statements (axioms, lemmas)
triggered by logic symbol applications

Mikhail Mandrykin (ISP RAS) May 30th, 2017 18 / 21

Proofs as C code

Results so far
o Tricky average computation
o ™ Kernighan's bitcount

(a & b) + ((a ~ b) > 1U)

e [1n queens

o ¥ Gray codes (SWAR decoding and properties)

(from the paper Verifying Two Lines of C with WHY3)

Mikhail Mandrykin (ISP RAS)

= DAC
May 30th, 2017 19 / 21

Summary B

e Linux kernel code makes extensive use of bitwise and
wrap-around operations

e Support for composite integer model combined with ghost
functions allows to efficiently reason about non-trivial code
fragments involving bitwise operations without the use of
external interactive tools (e.g. COQ or ISABELLE)

e Further ACSL extensions are needed for more complex
specifications (e.g. n queens)

Mikhail Mandrykin (ISP RAS) May 30th, 2017 20 / 21

r LinuxTesting
=0Org

AstraVer Toolset

*Frama-C

* AstraVer plugin (fork of Jessie)
*Why3

* Open source:
* http://linuxtesting.org/astraver
* http://forge.ispras.ru/projects/astraver/wiki

) RAS)

€ @ linuxtesting.org/18-02-2015 v | |Q search

Institute for System Programming of the Russian Academy of Sciences

- VERIFICATION CENTER g & P
OF THE OPERATING SYSTEM ll I“.lx 1sn

i

About Us i 18-Feb-2015: The first public release of Astraver Toolset

= About Center View Edit Track Translate

= Our Team Submitted by Mikhail Mandrykin on Wed, 18/02/2015 - 18:30

o News

= Partners We are happy to announce the first public release of Astraver Toolset 1.0 that is built on top of the 'Frama-C + Jessie +
o Contacts Why3 IDE' deductive verification toolchain. The toolchain was adapted, so it can be used to specify and prove properties of

Linux kernel code. The most of our modifications go to the Jessie plugin, while the Frama-C front-end and the Why3 platform
Projects have got just minor fixes or improvements, Some of our modifications were already applied upstream, while the rest is available
v Linux Kernel Space in our public repositories.
Verification
» LSB Infrastructure The most important modifications are described below.

v Testing Technologies C Language Support

b
}

Re:

b

b

Tests and Frameworks
Portability Tools

sults

Contribution
Publications
Events

khoroshilov

My account
User list

Create content
Feed aggregator
Administer

Log out

* Low-level reinterpret type casts between pointers to integral types. This feature required modification of the Jessie
memory model as described in our paper "Extended High-Level C-Compatible Memory Model with Limited Low-Level
Pointer Cast Support for Jessie Intermediate Language”. The overall idea can be summarized as an ability to do certain
ghost re-allocations of memory blocks in explicitly specified points in order to transform arrays of allocated objects
(structures) from one type to another WARNING. Discriminated unions support is not yet fully adapted to the modified
memory model.

s Prefix type casts between outer structures and their corresponding first substructures (through field inlining and structure
inheritance relation in Jessie).

s Kernel memory (de)allocating functions kmalloc()/ kzalloc(), kfree().

s Builtin C99 __ Bool type.

e Standard library functions memcpy(), memmove(), memcmp() and memset(). The support for these functions
implemented through type-based specialization of several pre-defined pattern specifications. (*)

e Function pointers (through exhaustive may-aliases checking). (*)

« Variadic functions (through additional array argument). (*)

« Inline assembly (through undefined function calls). (*)

5

(*)The main purpose of implementing support for these features was the ability to use the tools on our target code
without the need for its significant preliminary modification. As & result the support is not complete enough to be
nsahle for verificatinon of cnde Fhat sinonificantiv reflies nn these feafures. For instance:

(@ | linuxtesting.org/30-11-2016 ¢ | |Q Search

RUSSIAN Login | Registration
Institute for System Programming of the Russian Academy of Sciences A
- VERIFICATION CENTER l.. ” [\
OF THE OPERATING SYSTEM I nux A ' LsB -:

——

il 30-Nov-2016: Astraver Toolset 1.1 released

m About Center Submitted by admin on Wed, 30/11/2016 - 18:2

o Our Team

a News Astraver Toolset 1.1 comes with the following improvements:
a Partners C language support

e Contacts

» Initial support for pointer arithmetic involving nested structures e.g. * container_of macro from the Linux kernel.

. In particular, the new implementation allows to prove the validity of the pointer to the outer structure obtained by
’ !_;Q#rrc;{;&e' Space subtracting the offset of the inner structure from the pointer to that structure.

» LSB Infrastructure

New approach to support modulo arithmetic operations on values of integral C types in ACSL
» Testing Technologies

» Tests and Frameworks e The pragma " JessielntegerModel’ for switching between different integer models (e.g. “math’, "strict' and “ module') is no
» Portability Tools more available. The new integer model integrates " strict' and * modulo' models with per-operation granularity.
« There are new logic operations introduced: +%, -%, ¥%, /%, and (integral_type %) (a cast).
They represent the bitwise, i.e. overflowing or modulo arithmetic analogues of the corresponding operations without the

» Contribution
w Publications
» Events

%. These operations as well as all bitwise operations (&, |, ~, ~, >>, <<) are now encoded in the theory of fixed-sized
bit-vectors.

« The new code annotation /*@%*/ can be used to mark some operation occurring in the C code to be treated as
overflowing (performed in the modulo arithmetic) and encoded in the theory of bit-vectors.

Changes to Jessie2

e 5plit of the Jessie theory and the generated program theory and module. Now there is a separate theory for every
axiomatic, every global lemma, each bounded integral type, and many Jessie definitions like pointer, pointer set, allocation
table etc. The generated program module is now also separated into several ones, namely one per each code function.
The dependencies between theories and modules are computed automatically so that only the theories and modules
defining the needed symbols are imported. To import a theory with no used symbol (e.g. a useful lemma), a dummy
identically true predicate can be defined and later used.

« Loop invariants are now separated with *&®&’, which influences behaviour of the split transformation so that previously
proved invariants are added to premises when proving the remaining invariants.

Why3 IDE features

« Selected text search in task view.
* A new checkbox in View menu to hide empty theories (with no goals to prove)
in goals view.

Other differences to the upstream tools see in the previous release announcement.

I. LinuxTesting
-org

Conclusions

* Linux kernel code can be deductively
verified with Frama-C/AstraVer

* under some assumptions
* tool iImprovements required

) RAS)

LinuxTesting
«0rg

. http://linuxtesting.org/astraver

ISP[TE

Institute for System Programming of the Russian Academy of Sciences

