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Linux Verification Center

founded in 2005
● OLVER Program
● Linux Standard Base Infrastructure Program
● Linux Driver Verification Program
● Linux File System Verification Program
● Linux Deductive Verification



More Secure Software?

● More confidence
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● Informal specification (e.g. ISO/IEC 15408 or DO-178)
● Documentation
● Nothing

● Absence of typical errors 
(e.g. memory safety)

● Functional properties
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ISO/IEC 15408-2013 Common Criteria
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● Custom security policy model (MROSL-DP)
● Lattice-based multi-level security (MLS)
● Mandatory integrity control (MIC)
● Role-based access control (RBAC)

● Custom Linux Security Module (LSM) 
implementation

● parsec LSM

Astra Linux Special Edition



 

● Lattice-based multi-level security (MLS)
● No read access if !(seclabel(subj) ≥ seclabel(obj))
● No write access if seclabel(subj) ≠ seclabel(obj)

● Mandatory integrity control (MIC)
● No write access if integrity(subj) < integrity(obj)

● Role-based access control (RBAC)

~150 pages in mathematical notation

MROSL-DP Model



Security policy model
in mathematical

notation

DevelopmentADV

                  Process of Modeling and Verification of Access Policy Control

Functional
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Security policy model
in Event-B

1.1 1.2 1.3

Functional 
specification
in Event-B

Input data
for the process

Legend:

Result
of the process

2.1 2.2

2.1 2.2

● 1. Security policy modeling
● 1.1 Security policy modeling in mathematical notation
● 1.2 Formalizing SPM in Event-B
● 1.3 Verification of SPM in Event-B

● 2. Functional specification
● 2.1 Formalization of FSP
● 2.2 Verification of FSP



Formal MROSL-DP Model (Event-B)

● Constants: 34
● Axioms: 30 
● Variables: 60
● Invariants: 248
● Events:  75
● Refinement levels: 4
● Size: 4393 LoC
● Proof obligations:  2962
● from ~150 pages in mathematical notation
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MROSL-DP and Linux Security Module – The Gap

● open()
● read()
● write()
● close()
● ...

● inode_permission()
● socket_post_create()
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● ...

● User
● Session
● Role
● Access
● ...
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● Target code: Custom Linux Security Module
● + Small: 3 KLoC
● + Hardware independent
● - Sometimes verification unfriendly
● - Out of our control

● Properties to prove:
● Absence of run-time errors
● Compliance to MROSL-DP functional specifications

● Assumptions
● Linux kernel core conforms with its specifications

● It is not target to prove
● No concurrent access to data

Project Settings



Verification of Linux kernel

● Absence of typical errors
● Linux Driver Verification [out of scope]

● Functional properties (sequential)
● Informal specification (ISO/IEC 15408)
● Documentation
● Nothing



● Target code: Linux kernel library functions
● + Small and «simple» functions 
● + Hardware independent
● - Sometimes verification unfriendly
● - Out of our control

● Properties to prove:
● Absence of run-time errors
● Compliance to functional specifications (as strict as possible)

● Assumptions
● No concurrent access to data

● Public repository
● https://forge.ispras.ru/projects/verker
● Lead by Denis Efremov

VerKer - Linux kernel library functions



Tools

● Frama-C + Jessie2 + Why3
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// number of nonempty elements is evaluated by
// finding the first empty element of the array

 // returns a number of nonempty elements of range array

Bugs in target software



commit 834b40380e93e36f1c9b48ec1d280cebe3d7bd8c
Author: Alexey Khoroshilov <khoroshilov@ispras.ru>
Date:   Thu Nov 11 14:05:14 2010 -0800

    kernel/range.c: fix clean_sort_range() for the case of full array
    
    clean_sort_range() should return a number of nonempty elements of range
    array, but if the array is full clean_sort_range() returns 0.
    
    The problem is that the number of nonempty elements is evaluated by
    finding the first empty element of the array.  If there is no such element
    it returns an initial value of local variable nr_range that is zero.
    
    The fix is trivial: it changes initial value of nr_range to size of the
    array.
    
    The bug can lead to loss of information regarding all ranges, since
    typically returned value of clean_sort_range() is considered as an actual
    number of ranges in the array after a series of add/subtract operations.

    Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
    Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
    Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Bugs in target software

https://forge.ispras.ru/projects/verker
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"ACSL By Example Version 14.1.0", Listing 3.32 (The logic function Count): 

axiomatic Count {
  logic integer Count{L}(value_type *a, integer m, integer n, value_type v) reads a[m..n-1];

axiom CountSectionEmpty:
   \forall value_type *a, v, integer m, n; n <= m ==> Count(a, m, n, v) == 0;

axiom CountSectionHit:
   \forall value_type *a, v, integer n, m; 
      a[n] == v ==> Count(a, m, n + 1, v) == Count(a, m, n, v) + 1;
...
}

Contradiction:
value_type a = 5;
assert Count(&a + 1, 0, -1, (value_type) 5) == 0;
assert Count(&a + 1, 0, 0, (value_type) 5) == 0;
assert Count(&a + 1, 0, 0, (value_type) 5) == Count(&a + 1, 0, -1, (value_type) 5) + 1);
assert 0 == 1;

Bugs in formal property

Found by Denis Efremov, Mikhail Mandrykin
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Unmodified Linux kernel code



Unmodified Linux kernel code (2)



● Low level memory operations
● Arithmetics with pointers to fields of structures 

(container_of)
● Prefix structure casts
● Reinterpret casts

● Integer overflows and bit operations
● Complex functionality requires manual proof

● Lemma functions
● Limited code support

● Functional pointers
● String literals

● Scalability problems
● Usability problems

Problems with the tool



AstraVer Plugin (Mikhail Mandrykin)
 Reinterpretation support for pointers to integral types,

 merging array reinterpretation is only supported for divisible sizes
 Jessie theory/module split

 Automatic theory/module dependency computation per code function
 New model (theories and modules) for integral types

 Better support for bitwise and wrap-around operations
 Three-staged typing of annotations

 Arbitrary order of logic definitions, mutual recursion 
 A number of small extra features

 Relevant code extraction (annotated functions with dependencies)
 Function pointer support through exhaustive check for may-aliases
 Rewriting of variadic functions through additional array argument
 Template annotations for memcpy(), memmove(), memcmp(), …

 No support for input languages beyond C+ACSL (Java, OCaml)
 No annotation inference
 No bitvector memory regions
 No automatic frame condition generation for logic functions

 Reimplementation of the plugin based on dynamic frames and interpreted finite sets
 Customized bounded instantiation strategy for lemmas and frame axioms 
 Theory of finite sets
 Translation to formulas in stratified sort fragment
 Counterexample model reconstruction

 New path-sensitive region, effect and frame inference
 Translation to new intermediate representation (new Frama-C plugin)
 ACSL extensions: lemma functions, logic context management, region annotations,...

Done
(current plugin)

Dropped

TODO
(new plugin)

Imple-
mented



Recent Experiments
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Recent Experiments
Abstract Axiomatics - Use
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● Status:
● 25 of 37 functions are proved

● some lemmas for logic functions requires manual hints
● specifications with proof protocols are available

VerKer - Linux kernel library functions

● check_bytes8
● memchr
● memcmp
● memscan
● skip_spaces
● strcasecmp
● strcat
● strchr

● strchrnul
● strcmp
● strcpy
● strcspn
● strlen
● strnchr
● strnlen
● strpbrk

● strrchr
● strsep
● strspn
● strlcpy
● memmove(*)
● memcpy
● memset
● kstrtobool
● _parse_integer_fixup_radix 



Open Problems

● Specification 
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Conclusions

● Legacy software
● All possible code constructs
● Reconstruct requirements

● Open source tools is crucial
● New assurance components for program 

analysis
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Ivannikov Institute for System Programming of the Russian Academy of Sciences

Thank you!

http://linuxtesting.org/astraver


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 29
	Slide 30
	Slide 31
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 68
	Slide 69
	Slide 70
	Slide 71

