

Ivannikov Institute for System Programming of the Russian Academy of Sciences

Alexey Khoroshilov

khoroshilov@ispras.ru

Proving sequential
properties of unmodified
Linux kernel code

Linux Verification Center

founded in 2005
● OLVER Program
● Linux Standard Base Infrastructure Program
● Linux Driver Verification Program
● Linux File System Verification Program
● Linux Deductive Verification

More Secure Software?

● More confidence

Program Analysis

Target
software

Program Analysis

Target
software

Formal
property

Program Analysis

Target
software

Formal
property

Tool

Program Analysis

Target
software

Formal
property

Tool

Certificate

Program Analysis

Target
software

Formal
property

Tool

Certificate

● up to:
● Formal property is valid
● Tool is correct
● Tool assumptions are held

Program Analysis

Target
software

Formal
property

Tool

Certificate
● Absence of typical errors

(e.g. memory safety)
● Functional properties

● up to:
● Formal property is valid
● Tool is correct
● Tool assumptions are held

Program Analysis

Target
software

Formal
property

Tool

Certificate

● up to:
● Formal property is valid
● Tool is correct
● Tool assumptions are held

Manual assistance
● Invariants
● Annotations
● Lemmas
● Hints

Program Analysis

Target
software

Formal
property

Tool

● Bug in target software
● Bug in formal property
● Problems with the tool

Certificate
Manual assistance

● Invariants
● Annotations
● Lemmas
● Hints

Legacy Code

Target
software

Legacy Code

Target
software

Formal
property

● Absence of typical errors
(e.g. memory safety)

● Functional properties

Legacy Code

Target
software

Formal
property

● Informal specification (e.g. ISO/IEC 15408 or DO-178)
● Documentation
● Nothing

● Absence of typical errors
(e.g. memory safety)

● Functional properties

Verification of Linux kernel

● Absence of typical errors
● Linux Driver Verification [out of scope]

● Functional properties (sequential)
● Informal specification (ISO/IEC 15408)
● Documentation
● Nothing

Verification of Linux kernel

● Absence of typical errors
● Linux Driver Verification [out of scope]

● Functional properties (sequential)
● Informal specification (ISO/IEC 15408)
● Documentation
● Nothing

ISO/IEC 15408-2013 Common Criteria

Assurance components (ISO/IEC 15408-3-2013)

Configuration
management capabilities

ALC_CMC

 Life-cycle

Configuration
management scope

ALC_CMS

Delivery

ALC_DEL

Development
security

ALC_DVS

Flaw
remediation

ALC_FLR

Life-cycle definition

ALC_LCD

Tools and techniques

ALC_TAT

Coverage

ATE_COV

Depth

ATE_DPT

Functional
testing

ATE_FUN

Independent
testing

ATE_IND

Testing

Vulnerability analysis

Vulnerability analysis

AVA_VAN

Composition rationale

ACO_COR

Composition

Development evidence

ACO_DEV

Reliance of
dependent component

ACO_REL

Composed TOE testing

ACO_CTT

Composition
vulnerability analysis

ACO_VUL

Руководства
Operational

user guidance

AGD_OPE

Preparative
procedures

AGD_PRE

Functional specification

ADV_FSP

TOE design
ADV_TDS

Implementation
representation

ADV_IMP

Security policy model

ADV_SPM

TOE
internals

ADV_INT

Security
architecture

ADV_ARC

Development

Introduction
ASE_INT

Conformance
claim

ASE_CCL

Security
problem definition

ASE_SPD

 Security
objectives

ASE_OBJ

 Extended
components

definition

ASE_ECD

Security
requirements

ASE_REQ

TOE summary
specification

ASE_TSS

 Security target

Guidance documents

Security problem definition

Threats
Organization

security
policy

Security objectives

Security
objectives
for TOE

Security Target

Introduction

Security requirements

Security
functional

requirements

Security
assurance

requirements

Security
objectives

for environment

Assumptions

ASE

ASE — Security Target

Security problem definition

Threats
Organization

security
policy

Security objectives

Security
objectives
for TOE

Security Target

Introduction

Security requirements

Security
functional

requirements

Security
assurance

requirements

Security
objectives

for environment

Assumptions

DevelopmentADV

ASE

Implementation

TOE design

Functional
specification

ADV_SPM — Security Policy Model

Security policy model

Internal
structure

Security
architecture

● Custom security policy model (MROSL-DP)
● Lattice-based multi-level security (MLS)
● Mandatory integrity control (MIC)
● Role-based access control (RBAC)

● Custom Linux Security Module (LSM)
implementation

● parsec LSM

Astra Linux Special Edition

● Lattice-based multi-level security (MLS)
● No read access if !(seclabel(subj) ≥ seclabel(obj))
● No write access if seclabel(subj) ≠ seclabel(obj)

● Mandatory integrity control (MIC)
● No write access if integrity(subj) < integrity(obj)

● Role-based access control (RBAC)

~150 pages in mathematical notation

MROSL-DP Model

Security policy model
in mathematical

notation

DevelopmentADV

 Process of Modeling and Verification of Access Policy Control

Functional
specification

Security
functional

requirements

Security targetASE

Manual development

Automated
verification

Documents in natural language Documents in machine-readable form

Security policy model
in Event-B

1.1 1.2 1.3

Functional
specification
in Event-B

Input data
for the process

Legend:

Result
of the process

2.1 2.2

2.1 2.2

● 1. Security policy modeling
● 1.1 Security policy modeling in mathematical notation
● 1.2 Formalizing SPM in Event-B
● 1.3 Verification of SPM in Event-B

● 2. Functional specification
● 2.1 Formalization of FSP
● 2.2 Verification of FSP

Formal MROSL-DP Model (Event-B)

● Constants: 34
● Axioms: 30
● Variables: 60
● Invariants: 248
● Events: 75
● Refinement levels: 4
● Size: 4393 LoC
● Proof obligations: 2962
● from ~150 pages in mathematical notation

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC, VFS)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

Policy
Utilities

Linux
Security
Module

Security
Policy

Request

Response

LSM makes all
decisions whether
grant access or not

Key Component – Linux Security Module

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space

Kernel Modules

Kernel Core (mmu, scheduler, IPC, VFS)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel

Kernel Threads Device Drivers

Operating
System

Policy
Utilities

Linux
Security
Module

Security
Policy

Request

Response

MROSL-DP
model

Key Component – Linux Security Module

MROSL-DP and Linux Security Module – The Gap

● open()
● read()
● write()
● close()
● ...

● inode_permission()
● socket_post_create()
● task_kill()
● unix_stream_connect()
● ...

● kzalloc()
● copy_from_user()
● mutex_lock()
● posix_acl_release()
● ...

● User
● Session
● Role
● Access
● ...

Linux kernel

Linux security module

LSM hooks

Library kernel functions

System calls

Security Policy Model

Functional Specification

MROSL-DP and Linux Security Module – The Gap

MROSL-DP and Linux Security Module – The Gap

● open()
● read()
● write()
● close()
● ...

● inode_permission()
● socket_post_create()
● task_kill()
● unix_stream_connect()
● ...

● kzalloc()
● copy_from_user()
● mutex_lock()
● posix_acl_release()
● ...

● User
● Session
● Role
● Access
● ...

Linux kernel

Linux security module

LSM hooks

Library kernel functions

System calls

Security Policy Model

Functional Specification

● Target code: Custom Linux Security Module
● + Small: 3 KLoC
● + Hardware independent
● - Sometimes verification unfriendly
● - Out of our control

● Properties to prove:
● Absence of run-time errors
● Compliance to MROSL-DP functional specifications

● Assumptions
● Linux kernel core conforms with its specifications

● It is not target to prove
● No concurrent access to data

Project Settings

Verification of Linux kernel

● Absence of typical errors
● Linux Driver Verification [out of scope]

● Functional properties (sequential)
● Informal specification (ISO/IEC 15408)
● Documentation
● Nothing

● Target code: Linux kernel library functions
● + Small and «simple» functions
● + Hardware independent
● - Sometimes verification unfriendly
● - Out of our control

● Properties to prove:
● Absence of run-time errors
● Compliance to functional specifications (as strict as possible)

● Assumptions
● No concurrent access to data

● Public repository
● https://forge.ispras.ru/projects/verker
● Lead by Denis Efremov

VerKer - Linux kernel library functions

Tools

● Frama-C + Jessie2 + Why3

Program Analysis

Target
software

Formal
property

Tool

● Bug in target software
● Bug in formal property
● Problems with the tool

Certificate
Manual assistance

● Invariants
● Annotations
● Lemmas
● Hints

Program Analysis

Target
software

Formal
property

Tool

● Bug in target software
● Bug in formal property
● Problems with the tool

Certificate
Manual assistance

● Invariants
● Annotations
● Lemmas
● Hints

// number of nonempty elements is evaluated by
// finding the first empty element of the array

 // returns a number of nonempty elements of range array

Bugs in target software

commit 834b40380e93e36f1c9b48ec1d280cebe3d7bd8c
Author: Alexey Khoroshilov <khoroshilov@ispras.ru>
Date: Thu Nov 11 14:05:14 2010 -0800

 kernel/range.c: fix clean_sort_range() for the case of full array

 clean_sort_range() should return a number of nonempty elements of range
 array, but if the array is full clean_sort_range() returns 0.

 The problem is that the number of nonempty elements is evaluated by
 finding the first empty element of the array. If there is no such element
 it returns an initial value of local variable nr_range that is zero.

 The fix is trivial: it changes initial value of nr_range to size of the
 array.

 The bug can lead to loss of information regarding all ranges, since
 typically returned value of clean_sort_range() is considered as an actual
 number of ranges in the array after a series of add/subtract operations.

 Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
 Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

Bugs in target software

https://forge.ispras.ru/projects/verker

Program Analysis

Target
software

Formal
property

Tool

● Bug in target software
● Bug in formal property
● Problems with the tool

Certificate
Manual assistance

● Invariants
● Annotations
● Lemmas
● Hints

"ACSL By Example Version 14.1.0", Listing 3.32 (The logic function Count):

axiomatic Count {
 logic integer Count{L}(value_type *a, integer m, integer n, value_type v) reads a[m..n-1];

axiom CountSectionEmpty:
 \forall value_type *a, v, integer m, n; n <= m ==> Count(a, m, n, v) == 0;

axiom CountSectionHit:
 \forall value_type *a, v, integer n, m;
 a[n] == v ==> Count(a, m, n + 1, v) == Count(a, m, n, v) + 1;
...
}

Contradiction:
value_type a = 5;
assert Count(&a + 1, 0, -1, (value_type) 5) == 0;
assert Count(&a + 1, 0, 0, (value_type) 5) == 0;
assert Count(&a + 1, 0, 0, (value_type) 5) == Count(&a + 1, 0, -1, (value_type) 5) + 1);
assert 0 == 1;

Bugs in formal property

Found by Denis Efremov, Mikhail Mandrykin

Program Analysis

Target
software

Formal
property

Tool

● Bug in target software
● Bug in formal property
● Problems with the tool

Certificate
Manual assistance

● Invariants
● Annotations
● Lemmas
● Hints

Unmodified Linux kernel code

Unmodified Linux kernel code (2)

● Low level memory operations
● Arithmetics with pointers to fields of structures

(container_of)
● Prefix structure casts
● Reinterpret casts

● Integer overflows and bit operations
● Complex functionality requires manual proof

● Lemma functions
● Limited code support

● Functional pointers
● String literals

● Scalability problems
● Usability problems

Problems with the tool

AstraVer Plugin (Mikhail Mandrykin)
 Reinterpretation support for pointers to integral types,

 merging array reinterpretation is only supported for divisible sizes
 Jessie theory/module split

 Automatic theory/module dependency computation per code function
 New model (theories and modules) for integral types

 Better support for bitwise and wrap-around operations
 Three-staged typing of annotations

 Arbitrary order of logic definitions, mutual recursion
 A number of small extra features

 Relevant code extraction (annotated functions with dependencies)
 Function pointer support through exhaustive check for may-aliases
 Rewriting of variadic functions through additional array argument
 Template annotations for memcpy(), memmove(), memcmp(), …

 No support for input languages beyond C+ACSL (Java, OCaml)
 No annotation inference
 No bitvector memory regions
 No automatic frame condition generation for logic functions

 Reimplementation of the plugin based on dynamic frames and interpreted finite sets
 Customized bounded instantiation strategy for lemmas and frame axioms
 Theory of finite sets
 Translation to formulas in stratified sort fragment
 Counterexample model reconstruction

 New path-sensitive region, effect and frame inference
 Translation to new intermediate representation (new Frama-C plugin)
 ACSL extensions: lemma functions, logic context management, region annotations,...

Done
(current plugin)

Dropped

TODO
(new plugin)

Imple-
mented

Recent Experiments
Lemma Functions

Recent Experiments
Abstract Axiomatics

Recent Experiments
Abstract Axiomatics - Use

Program Analysis

Target
software

Formal
property

Tool

Certificate

● up to:
● Formal property is valid
● Tool is correct
● Tool assumptions are held

Manual assistance
● Invariants
● Annotations
● Lemmas
● Hints

● Status:
● 25 of 37 functions are proved

● some lemmas for logic functions requires manual hints
● specifications with proof protocols are available

VerKer - Linux kernel library functions

● check_bytes8
● memchr
● memcmp
● memscan
● skip_spaces
● strcasecmp
● strcat
● strchr

● strchrnul
● strcmp
● strcpy
● strcspn
● strlen
● strnchr
● strnlen
● strpbrk

● strrchr
● strsep
● strspn
● strlcpy
● memmove(*)
● memcpy
● memset
● kstrtobool
● _parse_integer_fixup_radix

Open Problems

● Specification

Open Problems

● Specification

Open Problems

● Specification

Conclusions

● Legacy software
● All possible code constructs
● Reconstruct requirements

● Open source tools is crucial
● New assurance components for program

analysis

Assurance components (ISO/IEC 15408-3-2013)

Configuration
management capabilities

ALC_CMC

 Life-cycle

Configuration
management scope

ALC_CMS

Delivery

ALC_DEL

Development
security

ALC_DVS

Flaw
remediation

ALC_FLR

Life-cycle definition

ALC_LCD

Tools and techniques

ALC_TAT

Coverage

ATE_COV

Depth

ATE_DPT

Functional
testing

ATE_FUN

Independent
testing

ATE_IND

Testing

Vulnerability analysis

Vulnerability analysis

AVA_VAN

Composition rationale

ACO_COR

Composition

Development evidence

ACO_DEV

Reliance of
dependent component

ACO_REL

Composed TOE testing

ACO_CTT

Composition
vulnerability analysis

ACO_VUL

Руководства
Operational

user guidance

AGD_OPE

Preparative
procedures

AGD_PRE

Functional specification

ADV_FSP

TOE design
ADV_TDS

Implementation
representation

ADV_IMP

Security policy model

ADV_SPM

TOE
internals

ADV_INT

Security
architecture

ADV_ARC

Development

Introduction
ASE_INT

Conformance
claim

ASE_CCL

Security
problem definition

ASE_SPD

 Security
objectives

ASE_OBJ

 Extended
components

definition

ASE_ECD

Security
requirements

ASE_REQ

TOE summary
specification

ASE_TSS

 Security target

Guidance documents

Security policy model
in mathematical

notation

DevelopmentADV

Implementation
representation

TOE design

Functional
specification

Security
functional

requirements

Security targetASE

Manual development

Automated
verification Documents in natural language Documents in machine-readable form

Security policy model
in Event-B

1.1 1.2 1.3

Functional
specification
in Event-B

Input data
for the process

Legend:

Result
of the process

2.1 2.2

2.1 2.2

3.1.1

KC

Key
components

Specification
KC

3.1.2

3.1.3

3.2.1

 Process of Modeling and Verification of Access Policy Control

Ivannikov Institute for System Programming of the Russian Academy of Sciences

Thank you!

http://linuxtesting.org/astraver

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 29
	Slide 30
	Slide 31
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 68
	Slide 69
	Slide 70
	Slide 71

