
Thread Modular
Configurable Program
Analysis
Pavel Andrianov, andrianov@ispras.ru

Motivation
Linux module drivers/net/irda/w83977af_ir.ko: 10 000 LOC

static void w83977af_change_speed(struct
w83977af_ir *self , __u32 speed){
 ...
 self->io.speed = speed;
 ...
} SMACK: memory limit

CBMC: time limit
Yogar-CBMC: segmentation fault
Mu-Cseq: –, UNKNOWN
CPALockator: 15 sec

static void w83977af_hard_xmit(struct
sk_buff *skb , struct net_device *dev){
 ...
 speed = irda_get_next_speed(skb);
 tmp_speed = self->io.speed;
 assert(self->io.speed == tmp_speed);
 if ((speed != self->io.speed) && ...) {
 …
 }
}

Existing approaches

Fast static analysis Precise model checking

Unsound bug finding Theoretically sound approach

RELAY, Locksmith,... CBMC, SMACK,...

Adjustable combination?

The goals of a new theory

Scaling on a real software Small amount of false alarms

Flexible balance between speed and precision

An idea for theory extension

Introduce new objects: inference objects, which describe applied action.

State A

State B

State A

State B

Object 1

Object 2

Classic transfer Extended transfer

An example

thread2(..):

…

global = 2;

…

thread1(..):

…

global = 1;

assert(global == 1);

global ￫ 2

An example

[global = 0]

[global = 1]

[global = 2]

[global = 2]

thread1: global = 1

thread2: global = 2

thread1: assert (global == 1)

Action in the other thread - inference object

Action in the current thread

Action in the current thread

Structure of an inference object

Inference object

Guard Action

When it can be applied? How it can be applied?

Example

[global == 0] global ￫ 2

Balancing between speed and precision

global ￫ 2

global ￫ 3

global ￫ 4

global ￫ undef

global ￫ 2

global ￫ 2

[global = 0]

[global = 1]

[global = 0]

[global = 0]

[global = 0]

[global = 0]

global ￫ 2[true]

Balancing between speed and precision

global ￫ 2

global ￫ 3

global ￫ 4

[global = 0]

[global = 0]

[global = 1]

global ￫ undef[global = 0]

global ￫ 4[global = 1]

Two options for extension of the theory
ThreadModular1 ThreadModular2

Comparison of the two approaches

ThreadModular1 ThreadModular2

An inference object is a special abstract state A top-level abstract state is a pair of inner abstract
state and an inference object

Waitlist is not a subset of a reached set Waitlist is still a subset of a reached set

No problems with ARG implementation Conflicting ARG and ThreadModular CPAs, which
one should be top-level

Theoretical requirements are provided and a
theorem about soundness was proven

Linux drivers with known bugs

Approach ThreadModular ThreadModular2 Threading

False verdicts

Correct 12 0 2

Incorrect 0 0 1

True verdicts 12 0 0

Unknowns 8 32 29

Time(s) 10 200 29 000 23 500

SV-COMP benchmarks

Approach ThreadModular ThreadModular2 Threading

False verdicts

Correct 789 11 767

Incorrect 199 46 2

True verdicts 33 0 163

Unknowns 26 990 115

Time(s) 28 400 862 000 63 000

Pros and Contras

● The first way is fast, as it operates with states and inference objects
distinctly

● The second requires less changes in basic algorithm
● Both of the options require a lot of changes in the CPAchecker core:

reached set and waitlist, algorithms, CPA operators.

Other problems with theory

● ARG does not satisfy the theory (side-effects of operators)
● BAM does not operate with global reached set
● Global refinement procedure

BAM logic

Block Block

BAM logic

ReachedSet ReachedSet

ReachedSet

Set of
states

Set of
states

Old idea New idea

Cons of the new idea

● Reducing and expansion of all internally states?
● Partial cache hits - is it possible?
● Parallel BAM - is it still real?

Conclusion

● The first way of the theory shows better results
● Discussion about the problem is open and welcome

Copy on Write Refinement (BAM-COW)

