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Size of Linux Kernel without Loadable Kernel 
Modules (Later – Linux Kernel)
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Challenge

Linux kernel operates on billions of devices
used by billions of people,

thus,
requirements for its functionality, security, reliability and 

performance are ones of the highest 
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Related Work

● Using special programming languages, tools and hardware
– Helps just in some cases

● Code review, testing, static analysis
– Does not aim at detecting all violations of checked requirements

● Deductive verification
– Needs too much human efforts (~1 man-year per 1 KLOC)

● Software verification
– Seems to be the only appropriate approach for scalable heavy-weight formal 

verification of software
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Outline

● Background
– Linux kernel subsystems

– Software verification tools

– Klever software verification framework

● Verification of Linux kernel
– Decomposing Linux kernel into subsystems

– Verifying Linux kernel subsystems together with device drivers

– Generating environment models for Linux kernel subsystems

– Checking requirements for Linux kernel subsystems

– Improving verification results

● Implementation and evaluation
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Linux Kernel Subsystems
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Linux Kernel Subsystems Operation

Initialization

Event handling

Termination
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Initialization of Linux Kernel Subsystems

● Each subsystem defines one or more initialization functions

● Startup function start_kernel() initializes the most vital 
subsystems first of all 

● Most of subsystems are initialized in accordance with their 
levels specified via macros taking initialization function names 
as arguments, e.g. Linux 3.14 has 19 such the levels

● Some subsystems initialize other ones
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Event Handling in Linux Kernel Subsystems

● Subsystems define and register callbacks for handling events

● Subsystems define helper functions invoked during handling 
events by other subsystems and loadable kernel modules
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Termination of Linux Kernel Subsystems

● Subsystems operate until normal or abnormal reboot

● There are no exit functions

● Subsystems do not perform final clean up
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Software verification tools

● Capable to check industrial programs of thousands or dozens 
of thousands of lines of code in size

● Need rather accurate environment models

● Allow to check various requirements (usually non-functional 
ones) 
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Klever software verification framework

● Is designed for checking various GNU C programs

● Includes specifications allowing:
– to generate rather accurate environment models for invoking most popular 

device driver APIs

– to check various requirements in device drivers
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Outline

● Background
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Decomposing Linux Kernel into Subsystems

● Treat all source files from specified directories built into Linux 
kernel as subsystems and add/remove individual source files by 
hand
– Simple update of configuration for new versions of Linux kernel

– Allow obtaining quite compact subsystems
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Verifying Linux Kernel Subsystems together with 
Device Drivers

● Verify each subsystem with all device drivers that use its 
interfaces one by one
– Too much time for verification but all possible interaction scenarios are 

covered

● Select those device drivers that increase function coverage in 
the best way
– Compromise between verification time and quality
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Generating Environment Models for Linux Kernel 
Subsystems

● Generator for initializing subsystems and device drivers
– Needs specifications relating subsystems initialization levels and functions

● Generator for invoking callbacks (the same as for device 
drivers)
– Reuses relevant environment model specifications for device drivers

– Needs subsystem specific specifications

● Modeling remaining environment
– Extending intermediate representation of environment model

– Developing models for vital undefined functions
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Checking Requirements for Linux Kernel 
Subsystems

● Check those requirements that are checked for device drivers 
and relevant for subsystems:
– Rules of correct usage of the Linux kernel API

– Memory safety

– Concurrency safety

● Adjust requirement specifications
– Do not check final state
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Improving Verification Results

● Until obtaining reasonable coverage and acceptable number of 
false alarms one needs step by step:
– to adjust tool configurations describing target subsystems and device drivers 

verified together with them

– to refine environment model and requirement specifications 
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Outline
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Evaluation

● Klever Git branch kernel-verification
– default specifications and tool configurations

● CPAchecker Subversion revision trunk:27583
– configuration ldv-bam for reachability 

– configuration smg-ldv for memory satety

– 15 minutes of CPU time and 10 GB of memory per each verification task

● Linux kernel
– architecture x86_64

– configuration allmodconfig 
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Target Subsystems (Linux 3.9 – 3.19)

Subsystem name Directory Source files Lines of code

Character Devices Support (CHAR) drivers/char 5 4194

General-Purpose I/O (GPIO) drivers/gpio 6 4472

Terminal Devices Support (TTY) drivers/tty 11 12129

Subsystem name Source files added/removed Lines of code added/removed

CHAR +0/-1 (+0%/-20%) +950/-712 (+23%/-17%)

GPIO +2/-3 (+33%/-50%) +5074/-3079 (+113%/-69%)

TTY +1/-0 (+9%/-0%) +4012/-3221 (+33%/-27%)
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Function Coverage for Target Subsystems
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Reasons of Absence of Function Coverage for 
Target Subsystems (Linux 3.14)



26

Average Number of Verdicts for Target Subsystems 
(12 Requirement Specifications) 
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Detecting Known Faults in Target Subsystems

Subsystem name Commit hash Requirements specification Detection status

CHAR 08d2d00b291e
b5325a02aa84
61c6375d5523

generic:memory
generic:memory
generic:memory

✗(another architecture)
✓(extra source files)
✗(another configuration)

GPIO e9595f84a627
00acc3dc2480

generic:memory
linux:kernel:locking:spinlock

✓(extra source files)
✓

TTY b216df538481
07584d4a356e
1d9e689c934b

generic:memory
linux:kernel:module
generic:memory

✗(needs specification)
✓(dead code)
✗(too complex)
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Conclusion

● We developed a new method that:
– enables rather thorough checking and finding hard-to-detect faults for 

subsystems of various versions of the Linux kernel

– does not require considerable efforts for configuring tools and developing 
specifications

● We could detect:
– one fault in GPIO Linux kernel subsystem

– 2 unreported faults in Linux kernel device drivers

– 4 of 8 known faults after slight adjustment

● There is room for improvement primarily by means of 
developing specifications
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Questions?

Novikov E. and Zakharov I. Verification of Operating System 
Monolithic Kernels without Extensions. Proceedings of the 8th  
International Symposium On Leveraging Applications of Formal 
Methods, Verification and Validation, 2018
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