
Verification of Linux Kernel
without Loadable Kernel Modules

Evgeny Novikov and Ilja Zakharov
ISP RAS, Linux Verification Center

CPA&LDV’18, Moscow, September 26, 2018

2

Linux Kernel Architecture

Kernel

3

Linux Kernel Architecture

Helper
module 1

Helper
module 2

Module 1 Module 2

Helper
module 3

Module 3 Module 4 Module 5

4373 modules
(Linux 3.14, x86_64, allmodconfig)

Kernel

4

Size of Linux Kernel without Loadable Kernel
Modules (Later – Linux Kernel)

4.
8

4.
2

3.
16

3.
103.

4

2.
6.

38 4.
5

3.
19

3.
133.

7
3.

1

2.
6.

35

2.
6.

32
600

700

800

900

1000

1100

1200

1300

1400

1500

Linux kernel version

L
in

e
s

o
f

co
d

e
,

th
o

u
sa

n
d

s

Average size of modules
is ~2 KLOC

5

Challenge

Linux kernel operates on billions of devices
used by billions of people,

thus,
requirements for its functionality, security, reliability and

performance are ones of the highest

6

Related Work

● Using special programming languages, tools and hardware
– Helps just in some cases

● Code review, testing, static analysis
– Does not aim at detecting all violations of checked requirements

● Deductive verification
– Needs too much human efforts (~1 man-year per 1 KLOC)

● Software verification
– Seems to be the only appropriate approach for scalable heavy-weight formal

verification of software

7

Outline

● Background
– Linux kernel subsystems

– Software verification tools

– Klever software verification framework

● Verification of Linux kernel
– Decomposing Linux kernel into subsystems

– Verifying Linux kernel subsystems together with device drivers

– Generating environment models for Linux kernel subsystems

– Checking requirements for Linux kernel subsystems

– Improving verification results

● Implementation and evaluation

8

Linux Kernel Subsystems

9

Linux Kernel Subsystems Operation

Initialization

Event handling

Termination

10

Initialization of Linux Kernel Subsystems

● Each subsystem defines one or more initialization functions

● Startup function start_kernel() initializes the most vital
subsystems first of all

● Most of subsystems are initialized in accordance with their
levels specified via macros taking initialization function names
as arguments, e.g. Linux 3.14 has 19 such the levels

● Some subsystems initialize other ones

11

Event Handling in Linux Kernel Subsystems

● Subsystems define and register callbacks for handling events

● Subsystems define helper functions invoked during handling
events by other subsystems and loadable kernel modules

12

Termination of Linux Kernel Subsystems

● Subsystems operate until normal or abnormal reboot

● There are no exit functions

● Subsystems do not perform final clean up

13

Software verification tools

● Capable to check industrial programs of thousands or dozens
of thousands of lines of code in size

● Need rather accurate environment models

● Allow to check various requirements (usually non-functional
ones)

14

Klever software verification framework

● Is designed for checking various GNU C programs

● Includes specifications allowing:
– to generate rather accurate environment models for invoking most popular

device driver APIs

– to check various requirements in device drivers

15

Outline

● Background
– Linux kernel subsystems

– Software verification tools

– Klever software verification framework

● Verification of Linux kernel
– Decomposing Linux kernel into subsystems

– Verifying Linux kernel subsystems together with device drivers

– Generating environment models for Linux kernel subsystems

– Checking requirements for Linux kernel subsystems

– Improving verification results

● Implementation and evaluation

16

Decomposing Linux Kernel into Subsystems

● Treat all source files from specified directories built into Linux
kernel as subsystems and add/remove individual source files by
hand
– Simple update of configuration for new versions of Linux kernel

– Allow obtaining quite compact subsystems

17

Verifying Linux Kernel Subsystems together with
Device Drivers

● Verify each subsystem with all device drivers that use its
interfaces one by one
– Too much time for verification but all possible interaction scenarios are

covered

● Select those device drivers that increase function coverage in
the best way
– Compromise between verification time and quality

18

Generating Environment Models for Linux Kernel
Subsystems

● Generator for initializing subsystems and device drivers
– Needs specifications relating subsystems initialization levels and functions

● Generator for invoking callbacks (the same as for device
drivers)
– Reuses relevant environment model specifications for device drivers

– Needs subsystem specific specifications

● Modeling remaining environment
– Extending intermediate representation of environment model

– Developing models for vital undefined functions

19

Checking Requirements for Linux Kernel
Subsystems

● Check those requirements that are checked for device drivers
and relevant for subsystems:
– Rules of correct usage of the Linux kernel API

– Memory safety

– Concurrency safety

● Adjust requirement specifications
– Do not check final state

20

Improving Verification Results

● Until obtaining reasonable coverage and acceptable number of
false alarms one needs step by step:
– to adjust tool configurations describing target subsystems and device drivers

verified together with them

– to refine environment model and requirement specifications

21

Outline

● Background
– Linux kernel subsystems

– Software verification tools

– Klever software verification framework

● Verification of Linux kernel
– Decomposing Linux kernel into subsystems

– Verifying Linux kernel subsystems together with device drivers

– Generating environment models for Linux kernel subsystems

– Checking requirements for Linux kernel subsystems

– Improving verification results

● Implementation and evaluation

22

Evaluation

● Klever Git branch kernel-verification
– default specifications and tool configurations

● CPAchecker Subversion revision trunk:27583
– configuration ldv-bam for reachability

– configuration smg-ldv for memory satety

– 15 minutes of CPU time and 10 GB of memory per each verification task

● Linux kernel
– architecture x86_64

– configuration allmodconfig

23

Target Subsystems (Linux 3.9 – 3.19)

Subsystem name Directory Source files Lines of code

Character Devices Support (CHAR) drivers/char 5 4194

General-Purpose I/O (GPIO) drivers/gpio 6 4472

Terminal Devices Support (TTY) drivers/tty 11 12129

Subsystem name Source files added/removed Lines of code added/removed

CHAR +0/-1 (+0%/-20%) +950/-712 (+23%/-17%)

GPIO +2/-3 (+33%/-50%) +5074/-3079 (+113%/-69%)

TTY +1/-0 (+9%/-0%) +4012/-3221 (+33%/-27%)

24

Function Coverage for Target Subsystems

25

Reasons of Absence of Function Coverage for
Target Subsystems (Linux 3.14)

26

Average Number of Verdicts for Target Subsystems
(12 Requirement Specifications)

27

Detecting Known Faults in Target Subsystems

Subsystem name Commit hash Requirements specification Detection status

CHAR 08d2d00b291e
b5325a02aa84
61c6375d5523

generic:memory
generic:memory
generic:memory

✗(another architecture)
✓(extra source files)
✗(another configuration)

GPIO e9595f84a627
00acc3dc2480

generic:memory
linux:kernel:locking:spinlock

✓(extra source files)
✓

TTY b216df538481
07584d4a356e
1d9e689c934b

generic:memory
linux:kernel:module
generic:memory

✗(needs specification)
✓(dead code)
✗(too complex)

28

Conclusion

● We developed a new method that:
– enables rather thorough checking and finding hard-to-detect faults for

subsystems of various versions of the Linux kernel

– does not require considerable efforts for configuring tools and developing
specifications

● We could detect:
– one fault in GPIO Linux kernel subsystem

– 2 unreported faults in Linux kernel device drivers

– 4 of 8 known faults after slight adjustment

● There is room for improvement primarily by means of
developing specifications

29

Questions?

Novikov E. and Zakharov I. Verification of Operating System
Monolithic Kernels without Extensions. Proceedings of the 8th
International Symposium On Leveraging Applications of Formal
Methods, Verification and Validation, 2018

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Страница 28
	Страница 29

