
Extracting Information About Software
Build Process and Source Code

Ilya Shchepetkov, ISP RAS
shchepetkov@ispras.ru

CPAchecker & LDV Workshop 2018
26 September, Moscow

Motivation
Most software verification tools require
preprocessed source code as their
input, which can be obtained only
knowing correct compilation options

Such options may be obtained by
intercepting build commands of the
target program

2

Motivation
Large programs are difficult to verify as a whole, so they are usually decomposed
into separate fragments, each of which require an entry point. The decomposition
algorithm, as well as the entry point generator, may require some additional
information, like:

● Dependencies between source and object files;
● Some inner knowledge: function and macros definitions, declarations,

functions calls, and so on

3

Previous Solutions
LDV Tools [2010 - 2015] intercepted build commands by directly modifying the
main project Makefile

● Only the Linux kernel was supported;
● Only some command types were intercepted (gcc, ld, mv) - and probably

some commands were missed;
● Very little information about the source code was gathered;
● There were compatibility issues

4

Previous Solutions
Klever - [up until now] - have used wrappers for the commands that needed to be
intercepted:

● Wrappers were created for several tools (gcc, ld, mv);
● The build process was forced to execute a wrapper by modifying the PATH

environment variable

The entry point generator additionally obtained information about the source code
using CIF

5

Goals
To develop a new standalone tool that would be able to:

● Intercept all commands that are executed during the build process;
● Parse selected subset of these commands to identify input and output files,

options;
● Be extendible to support parsing of additional commands;
● Connect parsed commands to each other;
● Collect information about the source code;
● All obtained information must be transferable between various computers;

6

Intercepting Build Commands
The approach is to intercept the exec calls issued by the build tool for each build
command

To do this we have developed a shared library that redefine such exec functions:
before creating a new process our exec functions store the information about the
command into separate file

The library is than injected into the build process using LD_PRELOAD (Linux) and
DYLD_INSERT_LIBRARIES (macOS) mechanisms provided by the dynamic linker

7

Intercepting Build Commands
/work/test$ LD_PRELOAD=libinterceptor.so make

8

Makefile

all:
 gcc test.c -o test.o
 rm test.o

execve("/usr/bin/gcc", {"gcc", "test.c", "-o", "test.o"}, ...);
execve("/usr/bin/rm", {"rm", "test.o"}, ...);

libinterceptor.so #include <unistd.h>

✔ X

Intercepting Build Commands
But: access control mechanisms on different operating systems might disable
library injection:

● SELinux on Fedora, CentOS, RHEL;
● System Integrity Protection on macOS;
● Mandatory Integrity Control on Windows (disables similar mechanisms)

9

Intercepting Build Commands
We have implemented an additional "fallback" intercepting mechanism similar to
one that was used in Klever before. It is also based on wrappers, but they are
generated automatically for every executable program that can be found in PATH

● Works everywhere;
● Do not intercept some commands

○ ✔ gcc test.c
○ X /usr/bin/gcc test.c

10

Build Commands Parsing
Next step is to parse intercepted commands to find their input and output values,
options. It is easy to do for simple commands, and not so easy for commands like
this one:

/Library/Developer/CommandLineTools/usr/bin/clang -cc1 -triple x86_64-apple-macosx10.13.0
-Wdeprecated-objc-isa-usage -Werror=deprecated-objc-isa-usage -Eonly -disable-free -disable-llvm-verifier
-discard-value-names -main-file-name server.c -mrelocation-model pic -pic-level 2 -mthread-model posix -mdisable-fp-elim
-fno-strict-return -masm-verbose -munwind-tables -target-cpu penryn -target-linker-version 351.8 -dwarf-column-info
-debug-info-kind=standalone -dwarf-version=4 -debugger-tuning=gdb -resource-dir
/Library/Developer/CommandLineTools/usr/lib/clang/9.1.0 -dependency-file - -w -MT server.deps.c -D REDIS_STATIC= -I
../deps/hiredis -I ../deps/linenoise -I ../deps/lua/src -O2 -Wall -W -Wno-missing-field-initializers -pedantic -std=c99
-fdebug-compilation-dir /Users/siddhartha/work/git/redis/src -ferror-limit 19 -fmessage-length 0 -stack-protector 1 -fblocks
-fobjc-runtime=macosx-10.13.0 -fencode-extended-block-signature -fmax-type-align=16 -fdiagnostics-show-option
-vectorize-loops -vectorize-slp -x c server.c

11

Build Commands Parsing
Our parsing algorithm is quite simple and is based on options that require values
(-MT server.deps.c). We split command string into array of separate words:

● If a word starts with "-" - it is an option;
● If it is an option and it require values, that the next word is also an option;
● Value after "-o" option is an output file;
● Every word that left (is not an option or an output file) - is input file

There are some exceptions, but it works without much tinkering for all types of
build commands that are interesting for us (cc, ld, mv, objcopy, ar, as)

12

Graph of commands
We can use their input and output values of all parsed commands to create graph of commands, which in
turn can be used for program decomposition into fragments

13

Source code querying
Final step: obtaining information about the source code using CIF:

● Functions: definitions, declarations, calls, calls via a function pointer;
● Macros and macro functions: definitions, expansions;
● Limited information about initializations of global variables and typedefs

Using this information together with command graph we can create a pretty
accurate call graph

14

Future work
● Consider Windows support
● Maybe replace CIF by Clang LibTooling for source code querying

15

Thanks!

16

Build Commands Parsing
For compilation commands we additionally do the following:

● Get dependencies of the input source file using pre-processor;
● Store input source file together with the dependencies for future reuse

17

