
Klever Tutorial
This tutorial describes a basic workflow of using ​Klever​.

Deployment
There is rather good documentation about Klever deployment. You can find it at ​https://klever.readthedocs.io/en/latest/​. In this
tutorial we assume that you deploy Klever ​locally​ on Debian 9 in the production mode with default settings from the latest master.
In addition, we assume that your username is ​debian​ and your home directory is ​/home/debian . 1

Preparing Build Bases
After a successful deployment of Klever you need to prepare a ​build base​ on the same machine where you deployed Klever. This
tutorial treats just build bases for Linux kernel loadable modules since the publicly available version of Klever supports verification
of other software in the experimental stage. You should not expect that Klever supports all versions and configurations of the Linux
kernel well. There is a ​big list of things to do​ in this direction.

Below we consider as an example preparation of a build base for verification of Linux 3.14.79 modules (architecture ​x86_64​,
configuration ​allmodconfig​, GCC 4.8.5). You can try to execute similar steps for other versions and configurations of the Linux
kernel at your own risks. To build new versions of the Linux kernel you may need newer versions of GCC.

You can download the archive of the target build base prepared in advance from ​here​. Let’s assume that you decompress this
archive into directory ​/home/debian/build-base-linux-3.14.79-x86_64-allmodconfig​ so that there should be file ​meta.json​ directly at
the top level in that directory.

To prepare the target build base from scratch you can follow the next steps:

$ wget ​https://cdn.kernel.org/pub/linux/kernel/v3.x/linux-3.14.79.tar.xz

$ tar -xvf linux-3.14.79.tar.xz

$ cd linux-3.14.79/

1 If this is not the case, you should adjust paths to build bases below respectively.
1

https://forge.ispras.ru/projects/klever
https://klever.readthedocs.io/en/latest/
https://klever.readthedocs.io/en/latest/deploy_local.html
https://klever.readthedocs.io/en/latest/deploy.html#klever-build-bases
https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.y45dikr8c6v5
https://forge.ispras.ru/attachments/download/7328/build-base-linux-3.14.79-x86_64-allmodconfig.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v3.x/linux-3.14.79.tar.xz

$ make allmodconfig

$ clade -w ~/build-base-linux-3.14.79-x86_64-allmodconfig -p klever_linux_kernel make -j8 modules

Then you will need to wait for quite a long period of time depending on the performance of your machine.

Signing in
Before performing all other actions described further in this tutorial you need to sign in to a Klever web interface:

1. Open page ​http://localhost:8998​ in your web-browser . 2

2. Input ​manager​ as a username and a password and sign in (Fig. 1).

Then you will be automatically redirected to a ​job tree​ page presented in the following sections.

Figure 1. Signing in

2 You can open the Klever web interface from other machines as well, but you need to set up appropriate access for that.
2

http://localhost:8998/

Starting Verification
As an example we consider checking usage of clocks in device drivers. To start up verification you need to do as follows:

1. Start the creation of a new ​job​ (Fig. 2).
2. Specify an appropriate title and create the new job (Fig. 3).
3. To configure a first ​job version​ you need to specify (Fig. 4):

a. The path to the prepared build base that is ​/home/debian/build-base-linux-3.14.79-x86_64-allmodconfig​.
b. Targets, e.g. device drivers, i.e. all modules from directory ​drivers​ in our example.
c. Requirement specifications to be checked, e.g. ​drivers:clk1​ and ​drivers:clk2​ in our example (you can see a complete

list of supported requirement specifications at the end of this section).
4. Press ​Ctrl-S​ when being at the editor window to save changes.
5. Start a ​decision of the job version​ (Fig. 4).

After that Klever automatically redirects you to a job version/decision page that is described in detail in the following sections.

Later you can create new jobs by opening the job tree page, e.g. through clicking on the Klever logo (Fig. 5), and by executing steps
above. You can create new jobs even when some job version is being decided, but job versions are decided one by one by default.

Below there are requirement specifications that you can choose for verification of Linux loadable kernel modules (we do not
recommend to check requirement specifications which identifiers are italicised since they produce either many false alarms or
there are just a few violations of these requirements at all):

1. alloc:irq
2. alloc:spinlock
3. alloc:usb lock
4. arch:asm:dma-mapping
5. arch:mm:ioremap
6. block:blk-core:queue
7. block:blk-core:request
8. block:genhd
9. concurrency safety
10.drivers:base:class
11.drivers:usb:core:usb:coherent
12.drivers:usb:core:usb:dev

13.drivers:usb:core:driver
14.drivers:usb:core:urb
15.drivers:usb:gadget:udc-core
16.drivers:clk1
17.drivers:clk2
18. fs:sysfs:group
19.kernel:locking:mutex
20.kernel:locking:rwlock
21.kernel:locking:spinlock
22.kernel:module
23. kernel:rcu:update:lock bh
24. kernel:rcu:update:lock shed

25.kernel:rcu:update:lock
26. kernel:rcu:srcu
27. kernel:sched:completion
28. lib:find_next_bit
29. lib:idr
30.memory safety
31.net:core:dev
32. net:core:rtnetlink
33. net:core:sock

3

In case of verification of the Linux kernel rather than vanilla 3.14.79, you may need to specify one extra parameter
specifications​ ​set​, when configuring the job version (Fig. 4), with a value from the following list:

1. 2.6.33
2. 4.6.7
3. 4.15
4. 4.17
5. 5.5

These specification sets correspond to vanilla versions of the Linux kernel. You should select such a specifications set that
matches your custom version of the Linux kernel better through trial and error.

Figure 2. Starting the creation of a new job

4

Figure 3. The creation of the new job

5

Figure 4. Configuring the first job version and starting its decision

Figure 5. Opening the job tree page

6

Decision Progress
At the beginning of the decision of the job version Klever indexes each new build base. This can take rather much time before it
starts to generate and to decide first ​tasks for large build bases. In about 15 minutes you can refresh the page and see some tasks 3

and their decisions there. Please, note that the automatic refresh of the job version/decision page stops after 5 minutes, so you
either need to refresh it through web browser means or request Klever to switch it on back (Fig. 6).

Before the job version is eventually decided Klever estimates and provides a ​decision progress​ (Fig. 7-8). You should keep in mind
that Klever collects statistics for 10% of tasks before it starts predicting an approximate remaining time for their decision. After
that, it recalculates it on the base of new, accumulated statistics. In our example it takes 1 day and 2 hours to decide the job
version completely (Fig. 9).

At the job tree page you can see all versions of particular jobs (Fig. 10) and their ​decision statutes​ (Fig. 11). Besides, you can open
the page with details of the decision of the latest job version (Fig. 12) or the page describing the decision of the particular job
version (Fig. 13).

Figure 6. Switching on the automatic refresh of the job version/decision page

3 For the considered example each task is a pair of a Linux loadable kernel module and a requirements specification. There are 3355 modules under
verification and 2 requirement specifications to be checked, so there are 6710 tasks in total.

7

Figure 7. The progress of the decision of the job version (estimating a remaining time)

8

Figure 8. The progress of the decision of the job version (the remaining time is estimated)

9

Figure 9. The completed decision of the job version

10

Figure 10. Showing job versions

Figure 11. The status of the decision of the job version

11

Figure 12. Opening the page with the decision of the latest job version

Figure 13. Opening the page with the decision of the particular job version

12

Analyzing Verification Results
Klever can fail to generate and to decide tasks. In this case it provides users with ​unknown​ verdicts, otherwise there are ​safe​ or
unsafe​ verdicts (Fig. 14). You already saw the example with summaries of these verdicts at the job tree page (Fig. 10-11). In this
tutorial we do not consider other verdicts rather than unsafes that are either violations of checked requirements or false alarms
(Fig. 15). Klever reports unsafes if so during the decision of the job version and you can assess them both during the decision and
after its completion.

During assessment of unsafes experts can create marks that can match other unsafes with similar error traces (we consider marks
and error traces in detail within the next section). For instance, there is a preset mark for a sample job that matches one of the
reported unsafes (Fig. 16). Automatic assessment can reduce efforts for analysis of verification results considerably, e.g. when
verifying several versions or configurations of the same software. But experts should analyze such automatically assessed unsafes
since the same mark can match unsafes with error traces that look very similar but correspond to different faults. Unsafes without
marks need assessment as well (Fig. 17). When checking several requirement specifications in the same job, one is able to analyze
unsafes just for a particular requirements specification (Fig. 18).

After clicking on the links in Fig. 15-18 you will be redirected to pages with lists of corresponding unsafes (e.g. Fig. 19) except for if
there is the only element in this list an error trace will be shown immediately. For further analysis we recommend clicking on an
unsafe index on the left to open a new page in a separate tab (Fig. 20). To return back to the job version/decision page you can
click on the title of the job decision on the top left (Fig. 21). This can be done at any page with such the link.

13

Figure 14. Verdicts

Figure 15. The total number of unsafes reported thus far

14

Figure 16. The total number of automatically assessed unsafes

Figure 17. The total number of unsafes without any assessment

15

Figure 18. The total number of unsafes corresponding to the particular requirements specification

16

Figure 19. The list of unsafes without any assessment

17

Figure 20. Opening the error trace corresponding to the unsafe without any assessment

Figure 21. Moving back to the job version/decision page

Analyzing Error Traces
After clicking on links within the list of unsafes like in Fig. 20, you will see corresponding error traces. For instance, Fig. 22
demonstrates an error trace example for module ​drivers/usb/gadget/mv_u3d_core.ko​ and requirements specification ​drivers:clk1​.

An ​error trace​ is a sequence of declarations and statements in a source code of a module under verification and an ​environment
model generated by Klever. Besides, within that sequence there are ​assumptions​ specifying conditions that a software model 4

4 Environment models emulate interactions of target programs or ​program fragments​ like Linux kernel loadable modules with their environment like libraries,
user inputs, interruptions and so on. Ideally they should cover only those interaction scenarios that are possible during real executions, but usually this is not

18

checker considers to be true. Declarations, statements and assumptions represent a path starting from an entry point and ending
at a violation of one of checked requirements. The entry point analogue for userspace programs is the function ​main​ while for Linux
loadable kernel modules entry points are generated by Klever as a part of environment models. Requirement violations do not
always correspond to places where detected faults should be fixed. For instance, the developer can omit a check for a return value
of a function that can fail. As a result various issues, such as leaks or null pointer dereferences, can be revealed somewhere later.

Numbers in the left column correspond to line numbers in source files and models. Source files and models are displayed to the
right of error traces. Fig. 22 does not contain anything at the right part of the window since there should be the environment model
containing the generated ​main​ function but by default models are not demonstrated for users in the web interface. If you click on a
line number corresponding to an original source file, you will see this source file as in Fig. 23.

You can click on eyes and on rectangles to show hidden parts of the error trace (Fig. 24-25). Then you can hide them back if they
are out of your interest. The difference between eyes and rectangles is that functions with eyes have either notes (Fig. 26) or
warnings (Fig. 27) at some point of their execution, perhaps, within called functions. ​Notes​ describe important actions in models.
Warnings​ represent places where Klever detects violations of checked requirements.

You can see that before calling module initialization and exit functions as well as module callbacks there is additional stuff in the
error trace. These are parts of the environment model necessary to initialize models, to invoke module interfaces in the way the
environment does and to check the final state. This tutorial does not consider models in detail, but you should keep in mind that
Klever can detect faults not only directly in the source code under verification but also when checking something after execution of
corresponding functions. For instance, this is the case for the considered error trace (Fig. 27).

The analyzed unsafe corresponds to the fault that was fixed in commit ​374a1020d21b​ to the Linux kernel. To finalize assessment
you need to create a new ​mark​ (Fig. 28-30):

1. Specify a verdict (​Bug​ in our example).
2. Specify a status (​Fixed​).
3. Provide a description.
4. Save the mark.

the case, so false alarms and missing bugs take place. Each environment model is generated on the basis of specifications and it is represented as a number
of additional C source files (​models​) bound with original ones through instrumentation.

19

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/drivers/usb/gadget/udc/mv_u3d_core.c?id=374a1020d21b

After that you will be automatically redirected to the page demonstrating changes in total verdicts (Fig. 31). In our example there is
the only change that corresponds to the analyzed unsafe and the new mark. But in a general case there may be many changes
since the same mark can match several unsafes, and you may need to investigate these changes.

After creating the mark you can see the first manually assessed unsafe (Fig. 32). Besides, as it was already noted, you should
investigate automatically assessed unsafes by analyzing corresponding error traces and marks and by (un)confirming their
associations (Fig. 33-35).

Figure 22. The error trace for module drivers/usb/gadget/mv_u3d_core.ko and requirements specification drivers:clk1

20

Figure 23. Showing the line in the original source file corresponding to the error trace statement

21

Figure 24. Showing hidden declarations, statements and assumptions for functions with notes or warnings

22

Figure 25. Showing hidden declarations, statements and assumptions for functions without notes and warnings

23

Figure 26. The error trace note

24

Figure 27. The error trace warning

25

Figure 28. Starting the creation of a new mark

26

Figure 29. Starting the creation of a new lightweight mark

27

Figure 30. The creation of the new lightweight mark

28

Figure 31. Changes in total verdicts

Figure 32. The total number of manually assessed unsafes

29

Figure 33. Opening the error trace of the unsafe with automatic assessment

30

Figure 34. Starting changing the association type

31

Figure 35. Confirming the automatic association

What’s Next?
We assume that you can be non-satisfied fully with a quality of obtained verification results. Perhaps, you even could not obtain
them at all. This is expected since Klever is an open source software developed in the Academy and we support verification of
Linux kernel loadable modules for evaluation purposes primarily. Besides, this tutorial misses ​many tricky activities​ like

32

https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.senezjrkxeg

development of specifications and support for verification of additional software. We are ready to discuss different issues and even
to fix some crucial bugs, but we do not have the manpower to make any considerable improvements for you for free.

33

