Error Trace
[Home]
Bug # 94
Show/hide error trace Error trace
{ 20 typedef unsigned char __u8; 23 typedef unsigned short __u16; 25 typedef int __s32; 26 typedef unsigned int __u32; 30 typedef unsigned long long __u64; 15 typedef signed char s8; 16 typedef unsigned char u8; 19 typedef unsigned short u16; 21 typedef int s32; 22 typedef unsigned int u32; 24 typedef long long s64; 25 typedef unsigned long long u64; 14 typedef long __kernel_long_t; 15 typedef unsigned long __kernel_ulong_t; 27 typedef int __kernel_pid_t; 48 typedef unsigned int __kernel_uid32_t; 49 typedef unsigned int __kernel_gid32_t; 71 typedef __kernel_ulong_t __kernel_size_t; 72 typedef __kernel_long_t __kernel_ssize_t; 87 typedef long long __kernel_loff_t; 88 typedef __kernel_long_t __kernel_time_t; 89 typedef __kernel_long_t __kernel_clock_t; 90 typedef int __kernel_timer_t; 91 typedef int __kernel_clockid_t; 32 typedef __u16 __le16; 34 typedef __u32 __le32; 229 struct kernel_symbol { unsigned long value; const char *name; } ; 33 struct module ; 12 typedef __u32 __kernel_dev_t; 15 typedef __kernel_dev_t dev_t; 18 typedef unsigned short umode_t; 21 typedef __kernel_pid_t pid_t; 26 typedef __kernel_clockid_t clockid_t; 29 typedef _Bool bool; 31 typedef __kernel_uid32_t uid_t; 32 typedef __kernel_gid32_t gid_t; 45 typedef __kernel_loff_t loff_t; 54 typedef __kernel_size_t size_t; 59 typedef __kernel_ssize_t ssize_t; 69 typedef __kernel_time_t time_t; 102 typedef __s32 int32_t; 108 typedef __u32 uint32_t; 133 typedef unsigned long sector_t; 134 typedef unsigned long blkcnt_t; 152 typedef u64 dma_addr_t; 157 typedef unsigned int gfp_t; 158 typedef unsigned int fmode_t; 159 typedef unsigned int oom_flags_t; 177 struct __anonstruct_atomic_t_6 { int counter; } ; 177 typedef struct __anonstruct_atomic_t_6 atomic_t; 182 struct __anonstruct_atomic64_t_7 { long counter; } ; 182 typedef struct __anonstruct_atomic64_t_7 atomic64_t; 183 struct list_head { struct list_head *next; struct list_head *prev; } ; 188 struct hlist_node ; 188 struct hlist_head { struct hlist_node *first; } ; 192 struct hlist_node { struct hlist_node *next; struct hlist_node **pprev; } ; 203 struct callback_head { struct callback_head *next; void (*func)(struct callback_head *); } ; 67 struct pt_regs { unsigned long r15; unsigned long r14; unsigned long r13; unsigned long r12; unsigned long bp; unsigned long bx; unsigned long r11; unsigned long r10; unsigned long r9; unsigned long r8; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; unsigned long orig_ax; unsigned long ip; unsigned long cs; unsigned long flags; unsigned long sp; unsigned long ss; } ; 66 struct __anonstruct____missing_field_name_9 { unsigned int a; unsigned int b; } ; 66 struct __anonstruct____missing_field_name_10 { u16 limit0; u16 base0; unsigned char base1; unsigned char type; unsigned char s; unsigned char dpl; unsigned char p; unsigned char limit; unsigned char avl; unsigned char l; unsigned char d; unsigned char g; unsigned char base2; } ; 66 union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4; struct __anonstruct____missing_field_name_10 __annonCompField5; } ; 66 struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6; } ; 12 typedef unsigned long pteval_t; 13 typedef unsigned long pmdval_t; 15 typedef unsigned long pgdval_t; 16 typedef unsigned long pgprotval_t; 18 struct __anonstruct_pte_t_11 { pteval_t pte; } ; 18 typedef struct __anonstruct_pte_t_11 pte_t; 20 struct pgprot { pgprotval_t pgprot; } ; 218 typedef struct pgprot pgprot_t; 220 struct __anonstruct_pgd_t_12 { pgdval_t pgd; } ; 220 typedef struct __anonstruct_pgd_t_12 pgd_t; 259 struct __anonstruct_pmd_t_14 { pmdval_t pmd; } ; 259 typedef struct __anonstruct_pmd_t_14 pmd_t; 361 struct page ; 361 typedef struct page *pgtable_t; 372 struct file ; 385 struct seq_file ; 423 struct thread_struct ; 425 struct mm_struct ; 426 struct task_struct ; 427 struct cpumask ; 20 struct qspinlock { atomic_t val; } ; 33 typedef struct qspinlock arch_spinlock_t; 34 struct qrwlock { atomic_t cnts; arch_spinlock_t lock; } ; 14 typedef struct qrwlock arch_rwlock_t; 131 typedef void (*ctor_fn_t)(); 234 struct _ddebug { const char *modname; const char *function; const char *filename; const char *format; unsigned int lineno; unsigned char flags; } ; 48 struct device ; 420 struct file_operations ; 432 struct completion ; 692 struct lockdep_map ; 19 struct math_emu_info { long ___orig_eip; struct pt_regs *regs; } ; 328 struct bug_entry { int bug_addr_disp; int file_disp; unsigned short line; unsigned short flags; } ; 102 struct cpumask { unsigned long bits[128U]; } ; 15 typedef struct cpumask cpumask_t; 652 typedef struct cpumask *cpumask_var_t; 260 struct fregs_state { u32 cwd; u32 swd; u32 twd; u32 fip; u32 fcs; u32 foo; u32 fos; u32 st_space[20U]; u32 status; } ; 26 struct __anonstruct____missing_field_name_24 { u64 rip; u64 rdp; } ; 26 struct __anonstruct____missing_field_name_25 { u32 fip; u32 fcs; u32 foo; u32 fos; } ; 26 union __anonunion____missing_field_name_23 { struct __anonstruct____missing_field_name_24 __annonCompField10; struct __anonstruct____missing_field_name_25 __annonCompField11; } ; 26 union __anonunion____missing_field_name_26 { u32 padding1[12U]; u32 sw_reserved[12U]; } ; 26 struct fxregs_state { u16 cwd; u16 swd; u16 twd; u16 fop; union __anonunion____missing_field_name_23 __annonCompField12; u32 mxcsr; u32 mxcsr_mask; u32 st_space[32U]; u32 xmm_space[64U]; u32 padding[12U]; union __anonunion____missing_field_name_26 __annonCompField13; } ; 66 struct swregs_state { u32 cwd; u32 swd; u32 twd; u32 fip; u32 fcs; u32 foo; u32 fos; u32 st_space[20U]; u8 ftop; u8 changed; u8 lookahead; u8 no_update; u8 rm; u8 alimit; struct math_emu_info *info; u32 entry_eip; } ; 155 struct xstate_header { u64 xfeatures; u64 xcomp_bv; u64 reserved[6U]; } ; 161 struct xregs_state { struct fxregs_state i387; struct xstate_header header; u8 __reserved[464U]; } ; 179 union fpregs_state { struct fregs_state fsave; struct fxregs_state fxsave; struct swregs_state soft; struct xregs_state xsave; u8 __padding[4096U]; } ; 194 struct fpu { unsigned int last_cpu; unsigned char fpstate_active; unsigned char fpregs_active; unsigned char counter; union fpregs_state state; } ; 170 struct seq_operations ; 369 struct perf_event ; 370 struct thread_struct { struct desc_struct tls_array[3U]; unsigned long sp0; unsigned long sp; unsigned short es; unsigned short ds; unsigned short fsindex; unsigned short gsindex; unsigned long fs; unsigned long gs; struct perf_event *ptrace_bps[4U]; unsigned long debugreg6; unsigned long ptrace_dr7; unsigned long cr2; unsigned long trap_nr; unsigned long error_code; unsigned long *io_bitmap_ptr; unsigned long iopl; unsigned int io_bitmap_max; struct fpu fpu; } ; 23 typedef atomic64_t atomic_long_t; 55 struct stack_trace { unsigned int nr_entries; unsigned int max_entries; unsigned long *entries; int skip; } ; 28 struct lockdep_subclass_key { char __one_byte; } ; 53 struct lock_class_key { struct lockdep_subclass_key subkeys[8U]; } ; 59 struct lock_class { struct list_head hash_entry; struct list_head lock_entry; struct lockdep_subclass_key *key; unsigned int subclass; unsigned int dep_gen_id; unsigned long usage_mask; struct stack_trace usage_traces[13U]; struct list_head locks_after; struct list_head locks_before; unsigned int version; unsigned long ops; const char *name; int name_version; unsigned long contention_point[4U]; unsigned long contending_point[4U]; } ; 144 struct lockdep_map { struct lock_class_key *key; struct lock_class *class_cache[2U]; const char *name; int cpu; unsigned long ip; } ; 205 struct held_lock { u64 prev_chain_key; unsigned long acquire_ip; struct lockdep_map *instance; struct lockdep_map *nest_lock; u64 waittime_stamp; u64 holdtime_stamp; unsigned short class_idx; unsigned char irq_context; unsigned char trylock; unsigned char read; unsigned char check; unsigned char hardirqs_off; unsigned short references; unsigned int pin_count; } ; 546 struct raw_spinlock { arch_spinlock_t raw_lock; unsigned int magic; unsigned int owner_cpu; void *owner; struct lockdep_map dep_map; } ; 32 typedef struct raw_spinlock raw_spinlock_t; 33 struct __anonstruct____missing_field_name_34 { u8 __padding[24U]; struct lockdep_map dep_map; } ; 33 union __anonunion____missing_field_name_33 { struct raw_spinlock rlock; struct __anonstruct____missing_field_name_34 __annonCompField15; } ; 33 struct spinlock { union __anonunion____missing_field_name_33 __annonCompField16; } ; 76 typedef struct spinlock spinlock_t; 23 struct __anonstruct_rwlock_t_35 { arch_rwlock_t raw_lock; unsigned int magic; unsigned int owner_cpu; void *owner; struct lockdep_map dep_map; } ; 23 typedef struct __anonstruct_rwlock_t_35 rwlock_t; 13 struct optimistic_spin_queue { atomic_t tail; } ; 39 struct mutex { atomic_t count; spinlock_t wait_lock; struct list_head wait_list; struct task_struct *owner; void *magic; struct lockdep_map dep_map; } ; 67 struct mutex_waiter { struct list_head list; struct task_struct *task; void *magic; } ; 64 struct usb_device ; 135 struct timespec ; 136 struct compat_timespec ; 137 struct __anonstruct_futex_37 { u32 *uaddr; u32 val; u32 flags; u32 bitset; u64 time; u32 *uaddr2; } ; 137 struct __anonstruct_nanosleep_38 { clockid_t clockid; struct timespec *rmtp; struct compat_timespec *compat_rmtp; u64 expires; } ; 137 struct pollfd ; 137 struct __anonstruct_poll_39 { struct pollfd *ufds; int nfds; int has_timeout; unsigned long tv_sec; unsigned long tv_nsec; } ; 137 union __anonunion____missing_field_name_36 { struct __anonstruct_futex_37 futex; struct __anonstruct_nanosleep_38 nanosleep; struct __anonstruct_poll_39 poll; } ; 137 struct restart_block { long int (*fn)(struct restart_block *); union __anonunion____missing_field_name_36 __annonCompField17; } ; 416 struct seqcount { unsigned int sequence; struct lockdep_map dep_map; } ; 52 typedef struct seqcount seqcount_t; 404 struct __anonstruct_seqlock_t_52 { struct seqcount seqcount; spinlock_t lock; } ; 404 typedef struct __anonstruct_seqlock_t_52 seqlock_t; 598 struct timespec { __kernel_time_t tv_sec; long tv_nsec; } ; 83 struct user_namespace ; 22 struct __anonstruct_kuid_t_53 { uid_t val; } ; 22 typedef struct __anonstruct_kuid_t_53 kuid_t; 27 struct __anonstruct_kgid_t_54 { gid_t val; } ; 27 typedef struct __anonstruct_kgid_t_54 kgid_t; 139 struct kstat { u64 ino; dev_t dev; umode_t mode; unsigned int nlink; kuid_t uid; kgid_t gid; dev_t rdev; loff_t size; struct timespec atime; struct timespec mtime; struct timespec ctime; unsigned long blksize; unsigned long long blocks; } ; 36 struct vm_area_struct ; 38 struct __wait_queue_head { spinlock_t lock; struct list_head task_list; } ; 43 typedef struct __wait_queue_head wait_queue_head_t; 95 struct __anonstruct_nodemask_t_55 { unsigned long bits[16U]; } ; 95 typedef struct __anonstruct_nodemask_t_55 nodemask_t; 810 struct rw_semaphore ; 811 struct rw_semaphore { long count; struct list_head wait_list; raw_spinlock_t wait_lock; struct optimistic_spin_queue osq; struct task_struct *owner; struct lockdep_map dep_map; } ; 172 struct completion { unsigned int done; wait_queue_head_t wait; } ; 446 union ktime { s64 tv64; } ; 41 typedef union ktime ktime_t; 1133 struct timer_list { struct hlist_node entry; unsigned long expires; void (*function)(unsigned long); unsigned long data; u32 flags; int slack; int start_pid; void *start_site; char start_comm[16U]; struct lockdep_map lockdep_map; } ; 238 struct hrtimer ; 239 enum hrtimer_restart ; 240 struct rb_node { unsigned long __rb_parent_color; struct rb_node *rb_right; struct rb_node *rb_left; } ; 41 struct rb_root { struct rb_node *rb_node; } ; 838 struct nsproxy ; 259 struct workqueue_struct ; 260 struct work_struct ; 54 struct work_struct { atomic_long_t data; struct list_head entry; void (*func)(struct work_struct *); struct lockdep_map lockdep_map; } ; 107 struct delayed_work { struct work_struct work; struct timer_list timer; struct workqueue_struct *wq; int cpu; } ; 58 struct pm_message { int event; } ; 64 typedef struct pm_message pm_message_t; 65 struct dev_pm_ops { int (*prepare)(struct device *); void (*complete)(struct device *); int (*suspend)(struct device *); int (*resume)(struct device *); int (*freeze)(struct device *); int (*thaw)(struct device *); int (*poweroff)(struct device *); int (*restore)(struct device *); int (*suspend_late)(struct device *); int (*resume_early)(struct device *); int (*freeze_late)(struct device *); int (*thaw_early)(struct device *); int (*poweroff_late)(struct device *); int (*restore_early)(struct device *); int (*suspend_noirq)(struct device *); int (*resume_noirq)(struct device *); int (*freeze_noirq)(struct device *); int (*thaw_noirq)(struct device *); int (*poweroff_noirq)(struct device *); int (*restore_noirq)(struct device *); int (*runtime_suspend)(struct device *); int (*runtime_resume)(struct device *); int (*runtime_idle)(struct device *); } ; 320 enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; 327 enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; 335 struct wakeup_source ; 336 struct wake_irq ; 337 struct pm_domain_data ; 338 struct pm_subsys_data { spinlock_t lock; unsigned int refcount; struct list_head clock_list; struct pm_domain_data *domain_data; } ; 556 struct dev_pm_qos ; 556 struct dev_pm_info { pm_message_t power_state; unsigned char can_wakeup; unsigned char async_suspend; bool is_prepared; bool is_suspended; bool is_noirq_suspended; bool is_late_suspended; bool ignore_children; bool early_init; bool direct_complete; spinlock_t lock; struct list_head entry; struct completion completion; struct wakeup_source *wakeup; bool wakeup_path; bool syscore; struct timer_list suspend_timer; unsigned long timer_expires; struct work_struct work; wait_queue_head_t wait_queue; struct wake_irq *wakeirq; atomic_t usage_count; atomic_t child_count; unsigned char disable_depth; unsigned char idle_notification; unsigned char request_pending; unsigned char deferred_resume; unsigned char run_wake; unsigned char runtime_auto; unsigned char no_callbacks; unsigned char irq_safe; unsigned char use_autosuspend; unsigned char timer_autosuspends; unsigned char memalloc_noio; enum rpm_request request; enum rpm_status runtime_status; int runtime_error; int autosuspend_delay; unsigned long last_busy; unsigned long active_jiffies; unsigned long suspended_jiffies; unsigned long accounting_timestamp; struct pm_subsys_data *subsys_data; void (*set_latency_tolerance)(struct device *, s32 ); struct dev_pm_qos *qos; } ; 615 struct dev_pm_domain { struct dev_pm_ops ops; void (*detach)(struct device *, bool ); int (*activate)(struct device *); void (*sync)(struct device *); void (*dismiss)(struct device *); } ; 25 struct ldt_struct ; 25 struct __anonstruct_mm_context_t_124 { struct ldt_struct *ldt; unsigned short ia32_compat; struct mutex lock; void *vdso; atomic_t perf_rdpmc_allowed; } ; 25 typedef struct __anonstruct_mm_context_t_124 mm_context_t; 1296 struct llist_node ; 64 struct llist_node { struct llist_node *next; } ; 37 struct cred ; 19 struct inode ; 58 struct arch_uprobe_task { unsigned long saved_scratch_register; unsigned int saved_trap_nr; unsigned int saved_tf; } ; 66 enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; 73 struct __anonstruct____missing_field_name_160 { struct arch_uprobe_task autask; unsigned long vaddr; } ; 73 struct __anonstruct____missing_field_name_161 { struct callback_head dup_xol_work; unsigned long dup_xol_addr; } ; 73 union __anonunion____missing_field_name_159 { struct __anonstruct____missing_field_name_160 __annonCompField32; struct __anonstruct____missing_field_name_161 __annonCompField33; } ; 73 struct uprobe ; 73 struct return_instance ; 73 struct uprobe_task { enum uprobe_task_state state; union __anonunion____missing_field_name_159 __annonCompField34; struct uprobe *active_uprobe; unsigned long xol_vaddr; struct return_instance *return_instances; unsigned int depth; } ; 94 struct return_instance { struct uprobe *uprobe; unsigned long func; unsigned long stack; unsigned long orig_ret_vaddr; bool chained; struct return_instance *next; } ; 110 struct xol_area ; 111 struct uprobes_state { struct xol_area *xol_area; } ; 150 struct address_space ; 151 struct mem_cgroup ; 31 typedef void compound_page_dtor(struct page *); 32 union __anonunion____missing_field_name_162 { struct address_space *mapping; void *s_mem; } ; 32 union __anonunion____missing_field_name_164 { unsigned long index; void *freelist; } ; 32 struct __anonstruct____missing_field_name_168 { unsigned short inuse; unsigned short objects; unsigned char frozen; } ; 32 union __anonunion____missing_field_name_167 { atomic_t _mapcount; struct __anonstruct____missing_field_name_168 __annonCompField37; int units; } ; 32 struct __anonstruct____missing_field_name_166 { union __anonunion____missing_field_name_167 __annonCompField38; atomic_t _count; } ; 32 union __anonunion____missing_field_name_165 { unsigned long counters; struct __anonstruct____missing_field_name_166 __annonCompField39; unsigned int active; } ; 32 struct __anonstruct____missing_field_name_163 { union __anonunion____missing_field_name_164 __annonCompField36; union __anonunion____missing_field_name_165 __annonCompField40; } ; 32 struct __anonstruct____missing_field_name_170 { struct page *next; int pages; int pobjects; } ; 32 struct slab ; 32 struct __anonstruct____missing_field_name_171 { compound_page_dtor *compound_dtor; unsigned long compound_order; } ; 32 union __anonunion____missing_field_name_169 { struct list_head lru; struct __anonstruct____missing_field_name_170 __annonCompField42; struct slab *slab_page; struct callback_head callback_head; struct __anonstruct____missing_field_name_171 __annonCompField43; pgtable_t pmd_huge_pte; } ; 32 struct kmem_cache ; 32 union __anonunion____missing_field_name_172 { unsigned long private; spinlock_t *ptl; struct kmem_cache *slab_cache; struct page *first_page; } ; 32 struct page { unsigned long flags; union __anonunion____missing_field_name_162 __annonCompField35; struct __anonstruct____missing_field_name_163 __annonCompField41; union __anonunion____missing_field_name_169 __annonCompField44; union __anonunion____missing_field_name_172 __annonCompField45; struct mem_cgroup *mem_cgroup; } ; 172 struct page_frag { struct page *page; __u32 offset; __u32 size; } ; 257 struct userfaultfd_ctx ; 257 struct vm_userfaultfd_ctx { struct userfaultfd_ctx *ctx; } ; 264 struct __anonstruct_shared_173 { struct rb_node rb; unsigned long rb_subtree_last; } ; 264 struct anon_vma ; 264 struct vm_operations_struct ; 264 struct mempolicy ; 264 struct vm_area_struct { unsigned long vm_start; unsigned long vm_end; struct vm_area_struct *vm_next; struct vm_area_struct *vm_prev; struct rb_node vm_rb; unsigned long rb_subtree_gap; struct mm_struct *vm_mm; pgprot_t vm_page_prot; unsigned long vm_flags; struct __anonstruct_shared_173 shared; struct list_head anon_vma_chain; struct anon_vma *anon_vma; const struct vm_operations_struct *vm_ops; unsigned long vm_pgoff; struct file *vm_file; void *vm_private_data; struct mempolicy *vm_policy; struct vm_userfaultfd_ctx vm_userfaultfd_ctx; } ; 337 struct core_thread { struct task_struct *task; struct core_thread *next; } ; 342 struct core_state { atomic_t nr_threads; struct core_thread dumper; struct completion startup; } ; 355 struct task_rss_stat { int events; int count[3U]; } ; 363 struct mm_rss_stat { atomic_long_t count[3U]; } ; 368 struct kioctx_table ; 369 struct linux_binfmt ; 369 struct mmu_notifier_mm ; 369 struct mm_struct { struct vm_area_struct *mmap; struct rb_root mm_rb; u32 vmacache_seqnum; unsigned long int (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); unsigned long mmap_base; unsigned long mmap_legacy_base; unsigned long task_size; unsigned long highest_vm_end; pgd_t *pgd; atomic_t mm_users; atomic_t mm_count; atomic_long_t nr_ptes; atomic_long_t nr_pmds; int map_count; spinlock_t page_table_lock; struct rw_semaphore mmap_sem; struct list_head mmlist; unsigned long hiwater_rss; unsigned long hiwater_vm; unsigned long total_vm; unsigned long locked_vm; unsigned long pinned_vm; unsigned long shared_vm; unsigned long exec_vm; unsigned long stack_vm; unsigned long def_flags; unsigned long start_code; unsigned long end_code; unsigned long start_data; unsigned long end_data; unsigned long start_brk; unsigned long brk; unsigned long start_stack; unsigned long arg_start; unsigned long arg_end; unsigned long env_start; unsigned long env_end; unsigned long saved_auxv[46U]; struct mm_rss_stat rss_stat; struct linux_binfmt *binfmt; cpumask_var_t cpu_vm_mask_var; mm_context_t context; unsigned long flags; struct core_state *core_state; spinlock_t ioctx_lock; struct kioctx_table *ioctx_table; struct task_struct *owner; struct file *exe_file; struct mmu_notifier_mm *mmu_notifier_mm; struct cpumask cpumask_allocation; unsigned long numa_next_scan; unsigned long numa_scan_offset; int numa_scan_seq; bool tlb_flush_pending; struct uprobes_state uprobes_state; void *bd_addr; } ; 15 typedef __u64 Elf64_Addr; 16 typedef __u16 Elf64_Half; 20 typedef __u32 Elf64_Word; 21 typedef __u64 Elf64_Xword; 190 struct elf64_sym { Elf64_Word st_name; unsigned char st_info; unsigned char st_other; Elf64_Half st_shndx; Elf64_Addr st_value; Elf64_Xword st_size; } ; 198 typedef struct elf64_sym Elf64_Sym; 53 union __anonunion____missing_field_name_178 { unsigned long bitmap[4U]; struct callback_head callback_head; } ; 53 struct idr_layer { int prefix; int layer; struct idr_layer *ary[256U]; int count; union __anonunion____missing_field_name_178 __annonCompField46; } ; 41 struct idr { struct idr_layer *hint; struct idr_layer *top; int layers; int cur; spinlock_t lock; int id_free_cnt; struct idr_layer *id_free; } ; 124 struct ida_bitmap { long nr_busy; unsigned long bitmap[15U]; } ; 153 struct ida { struct idr idr; struct ida_bitmap *free_bitmap; } ; 185 struct dentry ; 186 struct iattr ; 187 struct super_block ; 188 struct file_system_type ; 189 struct kernfs_open_node ; 190 struct kernfs_iattrs ; 213 struct kernfs_root ; 213 struct kernfs_elem_dir { unsigned long subdirs; struct rb_root children; struct kernfs_root *root; } ; 85 struct kernfs_node ; 85 struct kernfs_elem_symlink { struct kernfs_node *target_kn; } ; 89 struct kernfs_ops ; 89 struct kernfs_elem_attr { const struct kernfs_ops *ops; struct kernfs_open_node *open; loff_t size; struct kernfs_node *notify_next; } ; 96 union __anonunion____missing_field_name_183 { struct kernfs_elem_dir dir; struct kernfs_elem_symlink symlink; struct kernfs_elem_attr attr; } ; 96 struct kernfs_node { atomic_t count; atomic_t active; struct lockdep_map dep_map; struct kernfs_node *parent; const char *name; struct rb_node rb; const void *ns; unsigned int hash; union __anonunion____missing_field_name_183 __annonCompField47; void *priv; unsigned short flags; umode_t mode; unsigned int ino; struct kernfs_iattrs *iattr; } ; 138 struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root *, int *, char *); int (*show_options)(struct seq_file *, struct kernfs_root *); int (*mkdir)(struct kernfs_node *, const char *, umode_t ); int (*rmdir)(struct kernfs_node *); int (*rename)(struct kernfs_node *, struct kernfs_node *, const char *); } ; 155 struct kernfs_root { struct kernfs_node *kn; unsigned int flags; struct ida ino_ida; struct kernfs_syscall_ops *syscall_ops; struct list_head supers; wait_queue_head_t deactivate_waitq; } ; 171 struct kernfs_open_file { struct kernfs_node *kn; struct file *file; void *priv; struct mutex mutex; int event; struct list_head list; char *prealloc_buf; size_t atomic_write_len; bool mmapped; const struct vm_operations_struct *vm_ops; } ; 188 struct kernfs_ops { int (*seq_show)(struct seq_file *, void *); void * (*seq_start)(struct seq_file *, loff_t *); void * (*seq_next)(struct seq_file *, void *, loff_t *); void (*seq_stop)(struct seq_file *, void *); ssize_t (*read)(struct kernfs_open_file *, char *, size_t , loff_t ); size_t atomic_write_len; bool prealloc; ssize_t (*write)(struct kernfs_open_file *, char *, size_t , loff_t ); int (*mmap)(struct kernfs_open_file *, struct vm_area_struct *); struct lock_class_key lockdep_key; } ; 481 struct sock ; 482 struct kobject ; 483 enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; 489 struct kobj_ns_type_operations { enum kobj_ns_type type; bool (*current_may_mount)(); void * (*grab_current_ns)(); const void * (*netlink_ns)(struct sock *); const void * (*initial_ns)(); void (*drop_ns)(void *); } ; 59 struct bin_attribute ; 60 struct attribute { const char *name; umode_t mode; bool ignore_lockdep; struct lock_class_key *key; struct lock_class_key skey; } ; 37 struct attribute_group { const char *name; umode_t (*is_visible)(struct kobject *, struct attribute *, int); struct attribute **attrs; struct bin_attribute **bin_attrs; } ; 82 struct bin_attribute { struct attribute attr; size_t size; void *private; ssize_t (*read)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t , size_t ); ssize_t (*write)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t , size_t ); int (*mmap)(struct file *, struct kobject *, struct bin_attribute *, struct vm_area_struct *); } ; 155 struct sysfs_ops { ssize_t (*show)(struct kobject *, struct attribute *, char *); ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t ); } ; 509 struct kref { atomic_t refcount; } ; 52 struct kset ; 52 struct kobj_type ; 52 struct kobject { const char *name; struct list_head entry; struct kobject *parent; struct kset *kset; struct kobj_type *ktype; struct kernfs_node *sd; struct kref kref; struct delayed_work release; unsigned char state_initialized; unsigned char state_in_sysfs; unsigned char state_add_uevent_sent; unsigned char state_remove_uevent_sent; unsigned char uevent_suppress; } ; 115 struct kobj_type { void (*release)(struct kobject *); const struct sysfs_ops *sysfs_ops; struct attribute **default_attrs; const struct kobj_ns_type_operations * (*child_ns_type)(struct kobject *); const void * (*namespace)(struct kobject *); } ; 123 struct kobj_uevent_env { char *argv[3U]; char *envp[32U]; int envp_idx; char buf[2048U]; int buflen; } ; 131 struct kset_uevent_ops { const int (*filter)(struct kset *, struct kobject *); const const char * (*name)(struct kset *, struct kobject *); const int (*uevent)(struct kset *, struct kobject *, struct kobj_uevent_env *); } ; 148 struct kset { struct list_head list; spinlock_t list_lock; struct kobject kobj; const struct kset_uevent_ops *uevent_ops; } ; 223 struct kernel_param ; 228 struct kernel_param_ops { unsigned int flags; int (*set)(const char *, const struct kernel_param *); int (*get)(char *, const struct kernel_param *); void (*free)(void *); } ; 62 struct kparam_string ; 62 struct kparam_array ; 62 union __anonunion____missing_field_name_184 { void *arg; const struct kparam_string *str; const struct kparam_array *arr; } ; 62 struct kernel_param { const char *name; struct module *mod; const struct kernel_param_ops *ops; const u16 perm; s8 level; u8 flags; union __anonunion____missing_field_name_184 __annonCompField48; } ; 83 struct kparam_string { unsigned int maxlen; char *string; } ; 89 struct kparam_array { unsigned int max; unsigned int elemsize; unsigned int *num; const struct kernel_param_ops *ops; void *elem; } ; 469 struct latch_tree_node { struct rb_node node[2U]; } ; 211 struct mod_arch_specific { } ; 38 struct module_param_attrs ; 38 struct module_kobject { struct kobject kobj; struct module *mod; struct kobject *drivers_dir; struct module_param_attrs *mp; struct completion *kobj_completion; } ; 48 struct module_attribute { struct attribute attr; ssize_t (*show)(struct module_attribute *, struct module_kobject *, char *); ssize_t (*store)(struct module_attribute *, struct module_kobject *, const char *, size_t ); void (*setup)(struct module *, const char *); int (*test)(struct module *); void (*free)(struct module *); } ; 74 struct exception_table_entry ; 290 enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; 297 struct mod_tree_node { struct module *mod; struct latch_tree_node node; } ; 304 struct module_sect_attrs ; 304 struct module_notes_attrs ; 304 struct tracepoint ; 304 struct trace_event_call ; 304 struct trace_enum_map ; 304 struct module { enum module_state state; struct list_head list; char name[56U]; struct module_kobject mkobj; struct module_attribute *modinfo_attrs; const char *version; const char *srcversion; struct kobject *holders_dir; const struct kernel_symbol *syms; const unsigned long *crcs; unsigned int num_syms; struct mutex param_lock; struct kernel_param *kp; unsigned int num_kp; unsigned int num_gpl_syms; const struct kernel_symbol *gpl_syms; const unsigned long *gpl_crcs; const struct kernel_symbol *unused_syms; const unsigned long *unused_crcs; unsigned int num_unused_syms; unsigned int num_unused_gpl_syms; const struct kernel_symbol *unused_gpl_syms; const unsigned long *unused_gpl_crcs; bool sig_ok; bool async_probe_requested; const struct kernel_symbol *gpl_future_syms; const unsigned long *gpl_future_crcs; unsigned int num_gpl_future_syms; unsigned int num_exentries; struct exception_table_entry *extable; int (*init)(); void *module_init; void *module_core; unsigned int init_size; unsigned int core_size; unsigned int init_text_size; unsigned int core_text_size; struct mod_tree_node mtn_core; struct mod_tree_node mtn_init; unsigned int init_ro_size; unsigned int core_ro_size; struct mod_arch_specific arch; unsigned int taints; unsigned int num_bugs; struct list_head bug_list; struct bug_entry *bug_table; Elf64_Sym *symtab; Elf64_Sym *core_symtab; unsigned int num_symtab; unsigned int core_num_syms; char *strtab; char *core_strtab; struct module_sect_attrs *sect_attrs; struct module_notes_attrs *notes_attrs; char *args; void *percpu; unsigned int percpu_size; unsigned int num_tracepoints; const struct tracepoint **tracepoints_ptrs; unsigned int num_trace_bprintk_fmt; const char **trace_bprintk_fmt_start; struct trace_event_call **trace_events; unsigned int num_trace_events; struct trace_enum_map **trace_enums; unsigned int num_trace_enums; bool klp_alive; struct list_head source_list; struct list_head target_list; void (*exit)(); atomic_t refcnt; ctor_fn_t (**ctors)(); unsigned int num_ctors; } ; 22 struct kernel_cap_struct { __u32 cap[2U]; } ; 25 typedef struct kernel_cap_struct kernel_cap_t; 84 struct plist_node { int prio; struct list_head prio_list; struct list_head node_list; } ; 4 typedef unsigned long cputime_t; 25 struct sem_undo_list ; 25 struct sysv_sem { struct sem_undo_list *undo_list; } ; 78 struct user_struct ; 26 struct sysv_shm { struct list_head shm_clist; } ; 24 struct __anonstruct_sigset_t_192 { unsigned long sig[1U]; } ; 24 typedef struct __anonstruct_sigset_t_192 sigset_t; 25 struct siginfo ; 17 typedef void __signalfn_t(int); 18 typedef __signalfn_t *__sighandler_t; 20 typedef void __restorefn_t(); 21 typedef __restorefn_t *__sigrestore_t; 34 union sigval { int sival_int; void *sival_ptr; } ; 10 typedef union sigval sigval_t; 11 struct __anonstruct__kill_194 { __kernel_pid_t _pid; __kernel_uid32_t _uid; } ; 11 struct __anonstruct__timer_195 { __kernel_timer_t _tid; int _overrun; char _pad[0U]; sigval_t _sigval; int _sys_private; } ; 11 struct __anonstruct__rt_196 { __kernel_pid_t _pid; __kernel_uid32_t _uid; sigval_t _sigval; } ; 11 struct __anonstruct__sigchld_197 { __kernel_pid_t _pid; __kernel_uid32_t _uid; int _status; __kernel_clock_t _utime; __kernel_clock_t _stime; } ; 11 struct __anonstruct__addr_bnd_199 { void *_lower; void *_upper; } ; 11 struct __anonstruct__sigfault_198 { void *_addr; short _addr_lsb; struct __anonstruct__addr_bnd_199 _addr_bnd; } ; 11 struct __anonstruct__sigpoll_200 { long _band; int _fd; } ; 11 struct __anonstruct__sigsys_201 { void *_call_addr; int _syscall; unsigned int _arch; } ; 11 union __anonunion__sifields_193 { int _pad[28U]; struct __anonstruct__kill_194 _kill; struct __anonstruct__timer_195 _timer; struct __anonstruct__rt_196 _rt; struct __anonstruct__sigchld_197 _sigchld; struct __anonstruct__sigfault_198 _sigfault; struct __anonstruct__sigpoll_200 _sigpoll; struct __anonstruct__sigsys_201 _sigsys; } ; 11 struct siginfo { int si_signo; int si_errno; int si_code; union __anonunion__sifields_193 _sifields; } ; 113 typedef struct siginfo siginfo_t; 22 struct sigpending { struct list_head list; sigset_t signal; } ; 243 struct sigaction { __sighandler_t sa_handler; unsigned long sa_flags; __sigrestore_t sa_restorer; sigset_t sa_mask; } ; 257 struct k_sigaction { struct sigaction sa; } ; 443 enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; 450 struct pid_namespace ; 450 struct upid { int nr; struct pid_namespace *ns; struct hlist_node pid_chain; } ; 56 struct pid { atomic_t count; unsigned int level; struct hlist_head tasks[3U]; struct callback_head rcu; struct upid numbers[1U]; } ; 68 struct pid_link { struct hlist_node node; struct pid *pid; } ; 53 struct seccomp_filter ; 54 struct seccomp { int mode; struct seccomp_filter *filter; } ; 40 struct rt_mutex_waiter ; 41 struct rlimit { __kernel_ulong_t rlim_cur; __kernel_ulong_t rlim_max; } ; 11 struct timerqueue_node { struct rb_node node; ktime_t expires; } ; 12 struct timerqueue_head { struct rb_root head; struct timerqueue_node *next; } ; 50 struct hrtimer_clock_base ; 51 struct hrtimer_cpu_base ; 60 enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; 65 struct hrtimer { struct timerqueue_node node; ktime_t _softexpires; enum hrtimer_restart (*function)(struct hrtimer *); struct hrtimer_clock_base *base; unsigned long state; int start_pid; void *start_site; char start_comm[16U]; } ; 123 struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base; int index; clockid_t clockid; struct timerqueue_head active; ktime_t (*get_time)(); ktime_t offset; } ; 156 struct hrtimer_cpu_base { raw_spinlock_t lock; seqcount_t seq; struct hrtimer *running; unsigned int cpu; unsigned int active_bases; unsigned int clock_was_set_seq; bool migration_enabled; bool nohz_active; unsigned char in_hrtirq; unsigned char hres_active; unsigned char hang_detected; ktime_t expires_next; struct hrtimer *next_timer; unsigned int nr_events; unsigned int nr_retries; unsigned int nr_hangs; unsigned int max_hang_time; struct hrtimer_clock_base clock_base[4U]; } ; 466 struct task_io_accounting { u64 rchar; u64 wchar; u64 syscr; u64 syscw; u64 read_bytes; u64 write_bytes; u64 cancelled_write_bytes; } ; 45 struct latency_record { unsigned long backtrace[12U]; unsigned int count; unsigned long time; unsigned long max; } ; 39 struct assoc_array_ptr ; 39 struct assoc_array { struct assoc_array_ptr *root; unsigned long nr_leaves_on_tree; } ; 31 typedef int32_t key_serial_t; 34 typedef uint32_t key_perm_t; 35 struct key ; 36 struct signal_struct ; 37 struct key_type ; 41 struct keyring_index_key { struct key_type *type; const char *description; size_t desc_len; } ; 123 union __anonunion____missing_field_name_220 { struct list_head graveyard_link; struct rb_node serial_node; } ; 123 struct key_user ; 123 union __anonunion____missing_field_name_221 { time_t expiry; time_t revoked_at; } ; 123 struct __anonstruct____missing_field_name_223 { struct key_type *type; char *description; } ; 123 union __anonunion____missing_field_name_222 { struct keyring_index_key index_key; struct __anonstruct____missing_field_name_223 __annonCompField51; } ; 123 union __anonunion_type_data_224 { struct list_head link; unsigned long x[2U]; void *p[2U]; int reject_error; } ; 123 union __anonunion_payload_226 { unsigned long value; void *rcudata; void *data; void *data2[2U]; } ; 123 union __anonunion____missing_field_name_225 { union __anonunion_payload_226 payload; struct assoc_array keys; } ; 123 struct key { atomic_t usage; key_serial_t serial; union __anonunion____missing_field_name_220 __annonCompField49; struct rw_semaphore sem; struct key_user *user; void *security; union __anonunion____missing_field_name_221 __annonCompField50; time_t last_used_at; kuid_t uid; kgid_t gid; key_perm_t perm; unsigned short quotalen; unsigned short datalen; unsigned long flags; union __anonunion____missing_field_name_222 __annonCompField52; union __anonunion_type_data_224 type_data; union __anonunion____missing_field_name_225 __annonCompField53; } ; 358 struct audit_context ; 27 struct group_info { atomic_t usage; int ngroups; int nblocks; kgid_t small_block[32U]; kgid_t *blocks[0U]; } ; 90 struct cred { atomic_t usage; atomic_t subscribers; void *put_addr; unsigned int magic; kuid_t uid; kgid_t gid; kuid_t suid; kgid_t sgid; kuid_t euid; kgid_t egid; kuid_t fsuid; kgid_t fsgid; unsigned int securebits; kernel_cap_t cap_inheritable; kernel_cap_t cap_permitted; kernel_cap_t cap_effective; kernel_cap_t cap_bset; kernel_cap_t cap_ambient; unsigned char jit_keyring; struct key *session_keyring; struct key *process_keyring; struct key *thread_keyring; struct key *request_key_auth; void *security; struct user_struct *user; struct user_namespace *user_ns; struct group_info *group_info; struct callback_head rcu; } ; 377 struct percpu_ref ; 55 typedef void percpu_ref_func_t(struct percpu_ref *); 68 struct percpu_ref { atomic_long_t count; unsigned long percpu_count_ptr; percpu_ref_func_t *release; percpu_ref_func_t *confirm_switch; bool force_atomic; struct callback_head rcu; } ; 327 struct percpu_rw_semaphore { unsigned int *fast_read_ctr; atomic_t write_ctr; struct rw_semaphore rw_sem; atomic_t slow_read_ctr; wait_queue_head_t write_waitq; } ; 53 struct cgroup ; 54 struct cgroup_root ; 55 struct cgroup_subsys ; 56 struct cgroup_taskset ; 103 struct cgroup_subsys_state { struct cgroup *cgroup; struct cgroup_subsys *ss; struct percpu_ref refcnt; struct cgroup_subsys_state *parent; struct list_head sibling; struct list_head children; int id; unsigned int flags; u64 serial_nr; struct callback_head callback_head; struct work_struct destroy_work; } ; 129 struct css_set { atomic_t refcount; struct hlist_node hlist; struct list_head tasks; struct list_head mg_tasks; struct list_head cgrp_links; struct cgroup *dfl_cgrp; struct cgroup_subsys_state *subsys[13U]; struct list_head mg_preload_node; struct list_head mg_node; struct cgroup *mg_src_cgrp; struct css_set *mg_dst_cset; struct list_head e_cset_node[13U]; struct callback_head callback_head; } ; 202 struct cgroup { struct cgroup_subsys_state self; unsigned long flags; int id; int populated_cnt; struct kernfs_node *kn; struct kernfs_node *procs_kn; struct kernfs_node *populated_kn; unsigned int subtree_control; unsigned int child_subsys_mask; struct cgroup_subsys_state *subsys[13U]; struct cgroup_root *root; struct list_head cset_links; struct list_head e_csets[13U]; struct list_head pidlists; struct mutex pidlist_mutex; wait_queue_head_t offline_waitq; struct work_struct release_agent_work; } ; 275 struct cgroup_root { struct kernfs_root *kf_root; unsigned int subsys_mask; int hierarchy_id; struct cgroup cgrp; atomic_t nr_cgrps; struct list_head root_list; unsigned int flags; struct idr cgroup_idr; char release_agent_path[4096U]; char name[64U]; } ; 311 struct cftype { char name[64U]; unsigned long private; umode_t mode; size_t max_write_len; unsigned int flags; struct cgroup_subsys *ss; struct list_head node; struct kernfs_ops *kf_ops; u64 (*read_u64)(struct cgroup_subsys_state *, struct cftype *); s64 (*read_s64)(struct cgroup_subsys_state *, struct cftype *); int (*seq_show)(struct seq_file *, void *); void * (*seq_start)(struct seq_file *, loff_t *); void * (*seq_next)(struct seq_file *, void *, loff_t *); void (*seq_stop)(struct seq_file *, void *); int (*write_u64)(struct cgroup_subsys_state *, struct cftype *, u64 ); int (*write_s64)(struct cgroup_subsys_state *, struct cftype *, s64 ); ssize_t (*write)(struct kernfs_open_file *, char *, size_t , loff_t ); struct lock_class_key lockdep_key; } ; 393 struct cgroup_subsys { struct cgroup_subsys_state * (*css_alloc)(struct cgroup_subsys_state *); int (*css_online)(struct cgroup_subsys_state *); void (*css_offline)(struct cgroup_subsys_state *); void (*css_released)(struct cgroup_subsys_state *); void (*css_free)(struct cgroup_subsys_state *); void (*css_reset)(struct cgroup_subsys_state *); void (*css_e_css_changed)(struct cgroup_subsys_state *); int (*can_attach)(struct cgroup_subsys_state *, struct cgroup_taskset *); void (*cancel_attach)(struct cgroup_subsys_state *, struct cgroup_taskset *); void (*attach)(struct cgroup_subsys_state *, struct cgroup_taskset *); int (*can_fork)(struct task_struct *, void **); void (*cancel_fork)(struct task_struct *, void *); void (*fork)(struct task_struct *, void *); void (*exit)(struct cgroup_subsys_state *, struct cgroup_subsys_state *, struct task_struct *); void (*bind)(struct cgroup_subsys_state *); int disabled; int early_init; bool broken_hierarchy; bool warned_broken_hierarchy; int id; const char *name; const char *legacy_name; struct cgroup_root *root; struct idr css_idr; struct list_head cfts; struct cftype *dfl_cftypes; struct cftype *legacy_cftypes; unsigned int depends_on; } ; 128 struct futex_pi_state ; 129 struct robust_list_head ; 130 struct bio_list ; 131 struct fs_struct ; 132 struct perf_event_context ; 133 struct blk_plug ; 135 struct nameidata ; 188 struct cfs_rq ; 189 struct task_group ; 477 struct sighand_struct { atomic_t count; struct k_sigaction action[64U]; spinlock_t siglock; wait_queue_head_t signalfd_wqh; } ; 516 struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; cputime_t ac_utime; cputime_t ac_stime; unsigned long ac_minflt; unsigned long ac_majflt; } ; 524 struct cpu_itimer { cputime_t expires; cputime_t incr; u32 error; u32 incr_error; } ; 531 struct prev_cputime { cputime_t utime; cputime_t stime; raw_spinlock_t lock; } ; 556 struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; } ; 572 struct task_cputime_atomic { atomic64_t utime; atomic64_t stime; atomic64_t sum_exec_runtime; } ; 594 struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic; int running; } ; 630 struct autogroup ; 631 struct tty_struct ; 631 struct taskstats ; 631 struct tty_audit_buf ; 631 struct signal_struct { atomic_t sigcnt; atomic_t live; int nr_threads; struct list_head thread_head; wait_queue_head_t wait_chldexit; struct task_struct *curr_target; struct sigpending shared_pending; int group_exit_code; int notify_count; struct task_struct *group_exit_task; int group_stop_count; unsigned int flags; unsigned char is_child_subreaper; unsigned char has_child_subreaper; int posix_timer_id; struct list_head posix_timers; struct hrtimer real_timer; struct pid *leader_pid; ktime_t it_real_incr; struct cpu_itimer it[2U]; struct thread_group_cputimer cputimer; struct task_cputime cputime_expires; struct list_head cpu_timers[3U]; struct pid *tty_old_pgrp; int leader; struct tty_struct *tty; struct autogroup *autogroup; seqlock_t stats_lock; cputime_t utime; cputime_t stime; cputime_t cutime; cputime_t cstime; cputime_t gtime; cputime_t cgtime; struct prev_cputime prev_cputime; unsigned long nvcsw; unsigned long nivcsw; unsigned long cnvcsw; unsigned long cnivcsw; unsigned long min_flt; unsigned long maj_flt; unsigned long cmin_flt; unsigned long cmaj_flt; unsigned long inblock; unsigned long oublock; unsigned long cinblock; unsigned long coublock; unsigned long maxrss; unsigned long cmaxrss; struct task_io_accounting ioac; unsigned long long sum_sched_runtime; struct rlimit rlim[16U]; struct pacct_struct pacct; struct taskstats *stats; unsigned int audit_tty; unsigned int audit_tty_log_passwd; struct tty_audit_buf *tty_audit_buf; oom_flags_t oom_flags; short oom_score_adj; short oom_score_adj_min; struct mutex cred_guard_mutex; } ; 798 struct user_struct { atomic_t __count; atomic_t processes; atomic_t sigpending; atomic_t inotify_watches; atomic_t inotify_devs; atomic_t fanotify_listeners; atomic_long_t epoll_watches; unsigned long mq_bytes; unsigned long locked_shm; struct key *uid_keyring; struct key *session_keyring; struct hlist_node uidhash_node; kuid_t uid; atomic_long_t locked_vm; } ; 841 struct backing_dev_info ; 842 struct reclaim_state ; 843 struct sched_info { unsigned long pcount; unsigned long long run_delay; unsigned long long last_arrival; unsigned long long last_queued; } ; 857 struct task_delay_info { spinlock_t lock; unsigned int flags; u64 blkio_start; u64 blkio_delay; u64 swapin_delay; u32 blkio_count; u32 swapin_count; u64 freepages_start; u64 freepages_delay; u32 freepages_count; } ; 905 struct wake_q_node { struct wake_q_node *next; } ; 1134 struct io_context ; 1168 struct pipe_inode_info ; 1170 struct load_weight { unsigned long weight; u32 inv_weight; } ; 1177 struct sched_avg { u64 last_update_time; u64 load_sum; u32 util_sum; u32 period_contrib; unsigned long load_avg; unsigned long util_avg; } ; 1197 struct sched_statistics { u64 wait_start; u64 wait_max; u64 wait_count; u64 wait_sum; u64 iowait_count; u64 iowait_sum; u64 sleep_start; u64 sleep_max; s64 sum_sleep_runtime; u64 block_start; u64 block_max; u64 exec_max; u64 slice_max; u64 nr_migrations_cold; u64 nr_failed_migrations_affine; u64 nr_failed_migrations_running; u64 nr_failed_migrations_hot; u64 nr_forced_migrations; u64 nr_wakeups; u64 nr_wakeups_sync; u64 nr_wakeups_migrate; u64 nr_wakeups_local; u64 nr_wakeups_remote; u64 nr_wakeups_affine; u64 nr_wakeups_affine_attempts; u64 nr_wakeups_passive; u64 nr_wakeups_idle; } ; 1232 struct sched_entity { struct load_weight load; struct rb_node run_node; struct list_head group_node; unsigned int on_rq; u64 exec_start; u64 sum_exec_runtime; u64 vruntime; u64 prev_sum_exec_runtime; u64 nr_migrations; struct sched_statistics statistics; int depth; struct sched_entity *parent; struct cfs_rq *cfs_rq; struct cfs_rq *my_q; struct sched_avg avg; } ; 1264 struct rt_rq ; 1264 struct sched_rt_entity { struct list_head run_list; unsigned long timeout; unsigned long watchdog_stamp; unsigned int time_slice; struct sched_rt_entity *back; struct sched_rt_entity *parent; struct rt_rq *rt_rq; struct rt_rq *my_q; } ; 1280 struct sched_dl_entity { struct rb_node rb_node; u64 dl_runtime; u64 dl_deadline; u64 dl_period; u64 dl_bw; s64 runtime; u64 deadline; unsigned int flags; int dl_throttled; int dl_new; int dl_boosted; int dl_yielded; struct hrtimer dl_timer; } ; 1346 struct tlbflush_unmap_batch { struct cpumask cpumask; bool flush_required; bool writable; } ; 1365 struct memcg_oom_info { struct mem_cgroup *memcg; gfp_t gfp_mask; int order; unsigned char may_oom; } ; 1791 struct sched_class ; 1791 struct files_struct ; 1791 struct compat_robust_list_head ; 1791 struct numa_group ; 1791 struct task_struct { volatile long state; void *stack; atomic_t usage; unsigned int flags; unsigned int ptrace; struct llist_node wake_entry; int on_cpu; unsigned int wakee_flips; unsigned long wakee_flip_decay_ts; struct task_struct *last_wakee; int wake_cpu; int on_rq; int prio; int static_prio; int normal_prio; unsigned int rt_priority; const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; struct task_group *sched_task_group; struct sched_dl_entity dl; struct hlist_head preempt_notifiers; unsigned int policy; int nr_cpus_allowed; cpumask_t cpus_allowed; unsigned long rcu_tasks_nvcsw; bool rcu_tasks_holdout; struct list_head rcu_tasks_holdout_list; int rcu_tasks_idle_cpu; struct sched_info sched_info; struct list_head tasks; struct plist_node pushable_tasks; struct rb_node pushable_dl_tasks; struct mm_struct *mm; struct mm_struct *active_mm; u32 vmacache_seqnum; struct vm_area_struct *vmacache[4U]; struct task_rss_stat rss_stat; int exit_state; int exit_code; int exit_signal; int pdeath_signal; unsigned long jobctl; unsigned int personality; unsigned char in_execve; unsigned char in_iowait; unsigned char sched_reset_on_fork; unsigned char sched_contributes_to_load; unsigned char sched_migrated; unsigned char memcg_kmem_skip_account; unsigned char brk_randomized; unsigned long atomic_flags; struct restart_block restart_block; pid_t pid; pid_t tgid; struct task_struct *real_parent; struct task_struct *parent; struct list_head children; struct list_head sibling; struct task_struct *group_leader; struct list_head ptraced; struct list_head ptrace_entry; struct pid_link pids[3U]; struct list_head thread_group; struct list_head thread_node; struct completion *vfork_done; int *set_child_tid; int *clear_child_tid; cputime_t utime; cputime_t stime; cputime_t utimescaled; cputime_t stimescaled; cputime_t gtime; struct prev_cputime prev_cputime; unsigned long nvcsw; unsigned long nivcsw; u64 start_time; u64 real_start_time; unsigned long min_flt; unsigned long maj_flt; struct task_cputime cputime_expires; struct list_head cpu_timers[3U]; const struct cred *real_cred; const struct cred *cred; char comm[16U]; struct nameidata *nameidata; struct sysv_sem sysvsem; struct sysv_shm sysvshm; unsigned long last_switch_count; struct fs_struct *fs; struct files_struct *files; struct nsproxy *nsproxy; struct signal_struct *signal; struct sighand_struct *sighand; sigset_t blocked; sigset_t real_blocked; sigset_t saved_sigmask; struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; int (*notifier)(void *); void *notifier_data; sigset_t *notifier_mask; struct callback_head *task_works; struct audit_context *audit_context; kuid_t loginuid; unsigned int sessionid; struct seccomp seccomp; u32 parent_exec_id; u32 self_exec_id; spinlock_t alloc_lock; raw_spinlock_t pi_lock; struct wake_q_node wake_q; struct rb_root pi_waiters; struct rb_node *pi_waiters_leftmost; struct rt_mutex_waiter *pi_blocked_on; struct mutex_waiter *blocked_on; unsigned int irq_events; unsigned long hardirq_enable_ip; unsigned long hardirq_disable_ip; unsigned int hardirq_enable_event; unsigned int hardirq_disable_event; int hardirqs_enabled; int hardirq_context; unsigned long softirq_disable_ip; unsigned long softirq_enable_ip; unsigned int softirq_disable_event; unsigned int softirq_enable_event; int softirqs_enabled; int softirq_context; u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[48U]; gfp_t lockdep_reclaim_gfp; void *journal_info; struct bio_list *bio_list; struct blk_plug *plug; struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message; siginfo_t *last_siginfo; struct task_io_accounting ioac; u64 acct_rss_mem1; u64 acct_vm_mem1; cputime_t acct_timexpd; nodemask_t mems_allowed; seqcount_t mems_allowed_seq; int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; struct css_set *cgroups; struct list_head cg_list; struct robust_list_head *robust_list; struct compat_robust_list_head *compat_robust_list; struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; struct perf_event_context *perf_event_ctxp[2U]; struct mutex perf_event_mutex; struct list_head perf_event_list; struct mempolicy *mempolicy; short il_next; short pref_node_fork; int numa_scan_seq; unsigned int numa_scan_period; unsigned int numa_scan_period_max; int numa_preferred_nid; unsigned long numa_migrate_retry; u64 node_stamp; u64 last_task_numa_placement; u64 last_sum_exec_runtime; struct callback_head numa_work; struct list_head numa_entry; struct numa_group *numa_group; unsigned long *numa_faults; unsigned long total_numa_faults; unsigned long numa_faults_locality[3U]; unsigned long numa_pages_migrated; struct tlbflush_unmap_batch tlb_ubc; struct callback_head rcu; struct pipe_inode_info *splice_pipe; struct page_frag task_frag; struct task_delay_info *delays; int make_it_fail; int nr_dirtied; int nr_dirtied_pause; unsigned long dirty_paused_when; int latency_record_count; struct latency_record latency_record[32U]; unsigned long timer_slack_ns; unsigned long default_timer_slack_ns; unsigned int kasan_depth; unsigned long trace; unsigned long trace_recursion; struct memcg_oom_info memcg_oom; struct uprobe_task *utask; unsigned int sequential_io; unsigned int sequential_io_avg; unsigned long task_state_change; int pagefault_disabled; struct thread_struct thread; } ; 62 struct exception_table_entry { int insn; int fixup; } ; 13 typedef unsigned long kernel_ulong_t; 39 struct usb_device_id { __u16 match_flags; __u16 idVendor; __u16 idProduct; __u16 bcdDevice_lo; __u16 bcdDevice_hi; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bInterfaceClass; __u8 bInterfaceSubClass; __u8 bInterfaceProtocol; __u8 bInterfaceNumber; kernel_ulong_t driver_info; } ; 186 struct acpi_device_id { __u8 id[9U]; kernel_ulong_t driver_data; __u32 cls; __u32 cls_msk; } ; 221 struct of_device_id { char name[32U]; char type[32U]; char compatible[128U]; const void *data; } ; 253 struct usb_device_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 bcdUSB; __u8 bDeviceClass; __u8 bDeviceSubClass; __u8 bDeviceProtocol; __u8 bMaxPacketSize0; __le16 idVendor; __le16 idProduct; __le16 bcdDevice; __u8 iManufacturer; __u8 iProduct; __u8 iSerialNumber; __u8 bNumConfigurations; } ; 275 struct usb_config_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumInterfaces; __u8 bConfigurationValue; __u8 iConfiguration; __u8 bmAttributes; __u8 bMaxPower; } ; 343 struct usb_interface_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bInterfaceNumber; __u8 bAlternateSetting; __u8 bNumEndpoints; __u8 bInterfaceClass; __u8 bInterfaceSubClass; __u8 bInterfaceProtocol; __u8 iInterface; } ; 363 struct usb_endpoint_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bEndpointAddress; __u8 bmAttributes; __le16 wMaxPacketSize; __u8 bInterval; __u8 bRefresh; __u8 bSynchAddress; } ; 613 struct usb_ss_ep_comp_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bMaxBurst; __u8 bmAttributes; __le16 wBytesPerInterval; } ; 704 struct usb_interface_assoc_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bFirstInterface; __u8 bInterfaceCount; __u8 bFunctionClass; __u8 bFunctionSubClass; __u8 bFunctionProtocol; __u8 iFunction; } ; 763 struct usb_bos_descriptor { __u8 bLength; __u8 bDescriptorType; __le16 wTotalLength; __u8 bNumDeviceCaps; } ; 813 struct usb_ext_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __le32 bmAttributes; } ; 823 struct usb_ss_cap_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bmAttributes; __le16 wSpeedSupported; __u8 bFunctionalitySupport; __u8 bU1devExitLat; __le16 bU2DevExitLat; } ; 852 struct usb_ss_container_id_descriptor { __u8 bLength; __u8 bDescriptorType; __u8 bDevCapabilityType; __u8 bReserved; __u8 ContainerID[16U]; } ; 917 enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; 926 enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; 63 struct irq_domain ; 672 struct klist_node ; 37 struct klist_node { void *n_klist; struct list_head n_node; struct kref n_ref; } ; 68 struct path ; 69 struct seq_file { char *buf; size_t size; size_t from; size_t count; size_t pad_until; loff_t index; loff_t read_pos; u64 version; struct mutex lock; const struct seq_operations *op; int poll_event; struct user_namespace *user_ns; void *private; } ; 35 struct seq_operations { void * (*start)(struct seq_file *, loff_t *); void (*stop)(struct seq_file *, void *); void * (*next)(struct seq_file *, void *, loff_t *); int (*show)(struct seq_file *, void *); } ; 227 struct pinctrl ; 228 struct pinctrl_state ; 194 struct dev_pin_info { struct pinctrl *p; struct pinctrl_state *default_state; struct pinctrl_state *sleep_state; struct pinctrl_state *idle_state; } ; 48 struct dma_map_ops ; 48 struct dev_archdata { struct dma_map_ops *dma_ops; void *iommu; } ; 14 struct device_private ; 15 struct device_driver ; 16 struct driver_private ; 17 struct class ; 18 struct subsys_private ; 19 struct bus_type ; 20 struct device_node ; 21 struct fwnode_handle ; 22 struct iommu_ops ; 23 struct iommu_group ; 61 struct device_attribute ; 61 struct bus_type { const char *name; const char *dev_name; struct device *dev_root; struct device_attribute *dev_attrs; const struct attribute_group **bus_groups; const struct attribute_group **dev_groups; const struct attribute_group **drv_groups; int (*match)(struct device *, struct device_driver *); int (*uevent)(struct device *, struct kobj_uevent_env *); int (*probe)(struct device *); int (*remove)(struct device *); void (*shutdown)(struct device *); int (*online)(struct device *); int (*offline)(struct device *); int (*suspend)(struct device *, pm_message_t ); int (*resume)(struct device *); const struct dev_pm_ops *pm; const struct iommu_ops *iommu_ops; struct subsys_private *p; struct lock_class_key lock_key; } ; 139 struct device_type ; 197 enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ; 203 struct device_driver { const char *name; struct bus_type *bus; struct module *owner; const char *mod_name; bool suppress_bind_attrs; enum probe_type probe_type; const struct of_device_id *of_match_table; const struct acpi_device_id *acpi_match_table; int (*probe)(struct device *); int (*remove)(struct device *); void (*shutdown)(struct device *); int (*suspend)(struct device *, pm_message_t ); int (*resume)(struct device *); const struct attribute_group **groups; const struct dev_pm_ops *pm; struct driver_private *p; } ; 353 struct class_attribute ; 353 struct class { const char *name; struct module *owner; struct class_attribute *class_attrs; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(struct device *, struct kobj_uevent_env *); char * (*devnode)(struct device *, umode_t *); void (*class_release)(struct class *); void (*dev_release)(struct device *); int (*suspend)(struct device *, pm_message_t ); int (*resume)(struct device *); const struct kobj_ns_type_operations *ns_type; const void * (*namespace)(struct device *); const struct dev_pm_ops *pm; struct subsys_private *p; } ; 446 struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *, struct class_attribute *, char *); ssize_t (*store)(struct class *, struct class_attribute *, const char *, size_t ); } ; 514 struct device_type { const char *name; const struct attribute_group **groups; int (*uevent)(struct device *, struct kobj_uevent_env *); char * (*devnode)(struct device *, umode_t *, kuid_t *, kgid_t *); void (*release)(struct device *); const struct dev_pm_ops *pm; } ; 542 struct device_attribute { struct attribute attr; ssize_t (*show)(struct device *, struct device_attribute *, char *); ssize_t (*store)(struct device *, struct device_attribute *, const char *, size_t ); } ; 675 struct device_dma_parameters { unsigned int max_segment_size; unsigned long segment_boundary_mask; } ; 684 struct dma_coherent_mem ; 684 struct cma ; 684 struct device { struct device *parent; struct device_private *p; struct kobject kobj; const char *init_name; const struct device_type *type; struct mutex mutex; struct bus_type *bus; struct device_driver *driver; void *platform_data; void *driver_data; struct dev_pm_info power; struct dev_pm_domain *pm_domain; struct irq_domain *msi_domain; struct dev_pin_info *pins; struct list_head msi_list; int numa_node; u64 *dma_mask; u64 coherent_dma_mask; unsigned long dma_pfn_offset; struct device_dma_parameters *dma_parms; struct list_head dma_pools; struct dma_coherent_mem *dma_mem; struct cma *cma_area; struct dev_archdata archdata; struct device_node *of_node; struct fwnode_handle *fwnode; dev_t devt; u32 id; spinlock_t devres_lock; struct list_head devres_head; struct klist_node knode_class; struct class *class; const struct attribute_group **groups; void (*release)(struct device *); struct iommu_group *iommu_group; bool offline_disabled; bool offline; } ; 838 struct wakeup_source { const char *name; struct list_head entry; spinlock_t lock; struct wake_irq *wakeirq; struct timer_list timer; unsigned long timer_expires; ktime_t total_time; ktime_t max_time; ktime_t last_time; ktime_t start_prevent_time; ktime_t prevent_sleep_time; unsigned long event_count; unsigned long active_count; unsigned long relax_count; unsigned long expire_count; unsigned long wakeup_count; bool active; bool autosleep_enabled; } ; 93 struct hlist_bl_node ; 93 struct hlist_bl_head { struct hlist_bl_node *first; } ; 36 struct hlist_bl_node { struct hlist_bl_node *next; struct hlist_bl_node **pprev; } ; 114 struct __anonstruct____missing_field_name_257 { spinlock_t lock; int count; } ; 114 union __anonunion____missing_field_name_256 { struct __anonstruct____missing_field_name_257 __annonCompField64; } ; 114 struct lockref { union __anonunion____missing_field_name_256 __annonCompField65; } ; 50 struct vfsmount ; 51 struct __anonstruct____missing_field_name_259 { u32 hash; u32 len; } ; 51 union __anonunion____missing_field_name_258 { struct __anonstruct____missing_field_name_259 __annonCompField66; u64 hash_len; } ; 51 struct qstr { union __anonunion____missing_field_name_258 __annonCompField67; const unsigned char *name; } ; 90 struct dentry_operations ; 90 union __anonunion_d_u_260 { struct hlist_node d_alias; struct callback_head d_rcu; } ; 90 struct dentry { unsigned int d_flags; seqcount_t d_seq; struct hlist_bl_node d_hash; struct dentry *d_parent; struct qstr d_name; struct inode *d_inode; unsigned char d_iname[32U]; struct lockref d_lockref; const struct dentry_operations *d_op; struct super_block *d_sb; unsigned long d_time; void *d_fsdata; struct list_head d_lru; struct list_head d_child; struct list_head d_subdirs; union __anonunion_d_u_260 d_u; } ; 142 struct dentry_operations { int (*d_revalidate)(struct dentry *, unsigned int); int (*d_weak_revalidate)(struct dentry *, unsigned int); int (*d_hash)(const struct dentry *, struct qstr *); int (*d_compare)(const struct dentry *, const struct dentry *, unsigned int, const char *, const struct qstr *); int (*d_delete)(const struct dentry *); void (*d_release)(struct dentry *); void (*d_prune)(struct dentry *); void (*d_iput)(struct dentry *, struct inode *); char * (*d_dname)(struct dentry *, char *, int); struct vfsmount * (*d_automount)(struct path *); int (*d_manage)(struct dentry *, bool ); struct inode * (*d_select_inode)(struct dentry *, unsigned int); } ; 586 struct path { struct vfsmount *mnt; struct dentry *dentry; } ; 19 struct shrink_control { gfp_t gfp_mask; unsigned long nr_to_scan; int nid; struct mem_cgroup *memcg; } ; 27 struct shrinker { unsigned long int (*count_objects)(struct shrinker *, struct shrink_control *); unsigned long int (*scan_objects)(struct shrinker *, struct shrink_control *); int seeks; long batch; unsigned long flags; struct list_head list; atomic_long_t *nr_deferred; } ; 80 struct list_lru_one { struct list_head list; long nr_items; } ; 32 struct list_lru_memcg { struct list_lru_one *lru[0U]; } ; 37 struct list_lru_node { spinlock_t lock; struct list_lru_one lru; struct list_lru_memcg *memcg_lrus; } ; 47 struct list_lru { struct list_lru_node *node; struct list_head list; } ; 58 struct __anonstruct____missing_field_name_264 { struct radix_tree_node *parent; void *private_data; } ; 58 union __anonunion____missing_field_name_263 { struct __anonstruct____missing_field_name_264 __annonCompField68; struct callback_head callback_head; } ; 58 struct radix_tree_node { unsigned int path; unsigned int count; union __anonunion____missing_field_name_263 __annonCompField69; struct list_head private_list; void *slots[64U]; unsigned long tags[3U][1U]; } ; 105 struct radix_tree_root { unsigned int height; gfp_t gfp_mask; struct radix_tree_node *rnode; } ; 45 struct fiemap_extent { __u64 fe_logical; __u64 fe_physical; __u64 fe_length; __u64 fe_reserved64[2U]; __u32 fe_flags; __u32 fe_reserved[3U]; } ; 38 enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; 47 struct block_device ; 60 struct bdi_writeback ; 61 struct export_operations ; 64 struct kiocb ; 65 struct poll_table_struct ; 66 struct kstatfs ; 67 struct swap_info_struct ; 68 struct iov_iter ; 75 struct iattr { unsigned int ia_valid; umode_t ia_mode; kuid_t ia_uid; kgid_t ia_gid; loff_t ia_size; struct timespec ia_atime; struct timespec ia_mtime; struct timespec ia_ctime; struct file *ia_file; } ; 212 struct dquot ; 19 typedef __kernel_uid32_t projid_t; 23 struct __anonstruct_kprojid_t_270 { projid_t val; } ; 23 typedef struct __anonstruct_kprojid_t_270 kprojid_t; 166 enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; 66 typedef long long qsize_t; 67 union __anonunion____missing_field_name_271 { kuid_t uid; kgid_t gid; kprojid_t projid; } ; 67 struct kqid { union __anonunion____missing_field_name_271 __annonCompField71; enum quota_type type; } ; 184 struct mem_dqblk { qsize_t dqb_bhardlimit; qsize_t dqb_bsoftlimit; qsize_t dqb_curspace; qsize_t dqb_rsvspace; qsize_t dqb_ihardlimit; qsize_t dqb_isoftlimit; qsize_t dqb_curinodes; time_t dqb_btime; time_t dqb_itime; } ; 206 struct quota_format_type ; 207 struct mem_dqinfo { struct quota_format_type *dqi_format; int dqi_fmt_id; struct list_head dqi_dirty_list; unsigned long dqi_flags; unsigned int dqi_bgrace; unsigned int dqi_igrace; qsize_t dqi_max_spc_limit; qsize_t dqi_max_ino_limit; void *dqi_priv; } ; 272 struct dquot { struct hlist_node dq_hash; struct list_head dq_inuse; struct list_head dq_free; struct list_head dq_dirty; struct mutex dq_lock; atomic_t dq_count; wait_queue_head_t dq_wait_unused; struct super_block *dq_sb; struct kqid dq_id; loff_t dq_off; unsigned long dq_flags; struct mem_dqblk dq_dqb; } ; 299 struct quota_format_ops { int (*check_quota_file)(struct super_block *, int); int (*read_file_info)(struct super_block *, int); int (*write_file_info)(struct super_block *, int); int (*free_file_info)(struct super_block *, int); int (*read_dqblk)(struct dquot *); int (*commit_dqblk)(struct dquot *); int (*release_dqblk)(struct dquot *); } ; 310 struct dquot_operations { int (*write_dquot)(struct dquot *); struct dquot * (*alloc_dquot)(struct super_block *, int); void (*destroy_dquot)(struct dquot *); int (*acquire_dquot)(struct dquot *); int (*release_dquot)(struct dquot *); int (*mark_dirty)(struct dquot *); int (*write_info)(struct super_block *, int); qsize_t * (*get_reserved_space)(struct inode *); int (*get_projid)(struct inode *, kprojid_t *); } ; 325 struct qc_dqblk { int d_fieldmask; u64 d_spc_hardlimit; u64 d_spc_softlimit; u64 d_ino_hardlimit; u64 d_ino_softlimit; u64 d_space; u64 d_ino_count; s64 d_ino_timer; s64 d_spc_timer; int d_ino_warns; int d_spc_warns; u64 d_rt_spc_hardlimit; u64 d_rt_spc_softlimit; u64 d_rt_space; s64 d_rt_spc_timer; int d_rt_spc_warns; } ; 348 struct qc_type_state { unsigned int flags; unsigned int spc_timelimit; unsigned int ino_timelimit; unsigned int rt_spc_timelimit; unsigned int spc_warnlimit; unsigned int ino_warnlimit; unsigned int rt_spc_warnlimit; unsigned long long ino; blkcnt_t blocks; blkcnt_t nextents; } ; 394 struct qc_state { unsigned int s_incoredqs; struct qc_type_state s_state[3U]; } ; 405 struct qc_info { int i_fieldmask; unsigned int i_flags; unsigned int i_spc_timelimit; unsigned int i_ino_timelimit; unsigned int i_rt_spc_timelimit; unsigned int i_spc_warnlimit; unsigned int i_ino_warnlimit; unsigned int i_rt_spc_warnlimit; } ; 418 struct quotactl_ops { int (*quota_on)(struct super_block *, int, int, struct path *); int (*quota_off)(struct super_block *, int); int (*quota_enable)(struct super_block *, unsigned int); int (*quota_disable)(struct super_block *, unsigned int); int (*quota_sync)(struct super_block *, int); int (*set_info)(struct super_block *, int, struct qc_info *); int (*get_dqblk)(struct super_block *, struct kqid , struct qc_dqblk *); int (*set_dqblk)(struct super_block *, struct kqid , struct qc_dqblk *); int (*get_state)(struct super_block *, struct qc_state *); int (*rm_xquota)(struct super_block *, unsigned int); } ; 432 struct quota_format_type { int qf_fmt_id; const struct quota_format_ops *qf_ops; struct module *qf_owner; struct quota_format_type *qf_next; } ; 496 struct quota_info { unsigned int flags; struct mutex dqio_mutex; struct mutex dqonoff_mutex; struct inode *files[3U]; struct mem_dqinfo info[3U]; const struct quota_format_ops *ops[3U]; } ; 526 struct writeback_control ; 527 struct kiocb { struct file *ki_filp; loff_t ki_pos; void (*ki_complete)(struct kiocb *, long, long); void *private; int ki_flags; } ; 366 struct address_space_operations { int (*writepage)(struct page *, struct writeback_control *); int (*readpage)(struct file *, struct page *); int (*writepages)(struct address_space *, struct writeback_control *); int (*set_page_dirty)(struct page *); int (*readpages)(struct file *, struct address_space *, struct list_head *, unsigned int); int (*write_begin)(struct file *, struct address_space *, loff_t , unsigned int, unsigned int, struct page **, void **); int (*write_end)(struct file *, struct address_space *, loff_t , unsigned int, unsigned int, struct page *, void *); sector_t (*bmap)(struct address_space *, sector_t ); void (*invalidatepage)(struct page *, unsigned int, unsigned int); int (*releasepage)(struct page *, gfp_t ); void (*freepage)(struct page *); ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *, loff_t ); int (*migratepage)(struct address_space *, struct page *, struct page *, enum migrate_mode ); int (*launder_page)(struct page *); int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long); void (*is_dirty_writeback)(struct page *, bool *, bool *); int (*error_remove_page)(struct address_space *, struct page *); int (*swap_activate)(struct swap_info_struct *, struct file *, sector_t *); void (*swap_deactivate)(struct file *); } ; 423 struct address_space { struct inode *host; struct radix_tree_root page_tree; spinlock_t tree_lock; atomic_t i_mmap_writable; struct rb_root i_mmap; struct rw_semaphore i_mmap_rwsem; unsigned long nrpages; unsigned long nrshadows; unsigned long writeback_index; const struct address_space_operations *a_ops; unsigned long flags; spinlock_t private_lock; struct list_head private_list; void *private_data; } ; 443 struct request_queue ; 444 struct hd_struct ; 444 struct gendisk ; 444 struct block_device { dev_t bd_dev; int bd_openers; struct inode *bd_inode; struct super_block *bd_super; struct mutex bd_mutex; struct list_head bd_inodes; void *bd_claiming; void *bd_holder; int bd_holders; bool bd_write_holder; struct list_head bd_holder_disks; struct block_device *bd_contains; unsigned int bd_block_size; struct hd_struct *bd_part; unsigned int bd_part_count; int bd_invalidated; struct gendisk *bd_disk; struct request_queue *bd_queue; struct list_head bd_list; unsigned long bd_private; int bd_fsfreeze_count; struct mutex bd_fsfreeze_mutex; } ; 560 struct posix_acl ; 561 struct inode_operations ; 561 union __anonunion____missing_field_name_274 { const unsigned int i_nlink; unsigned int __i_nlink; } ; 561 union __anonunion____missing_field_name_275 { struct hlist_head i_dentry; struct callback_head i_rcu; } ; 561 struct file_lock_context ; 561 struct cdev ; 561 union __anonunion____missing_field_name_276 { struct pipe_inode_info *i_pipe; struct block_device *i_bdev; struct cdev *i_cdev; char *i_link; } ; 561 struct inode { umode_t i_mode; unsigned short i_opflags; kuid_t i_uid; kgid_t i_gid; unsigned int i_flags; struct posix_acl *i_acl; struct posix_acl *i_default_acl; const struct inode_operations *i_op; struct super_block *i_sb; struct address_space *i_mapping; void *i_security; unsigned long i_ino; union __anonunion____missing_field_name_274 __annonCompField72; dev_t i_rdev; loff_t i_size; struct timespec i_atime; struct timespec i_mtime; struct timespec i_ctime; spinlock_t i_lock; unsigned short i_bytes; unsigned int i_blkbits; blkcnt_t i_blocks; unsigned long i_state; struct mutex i_mutex; unsigned long dirtied_when; unsigned long dirtied_time_when; struct hlist_node i_hash; struct list_head i_io_list; struct bdi_writeback *i_wb; int i_wb_frn_winner; u16 i_wb_frn_avg_time; u16 i_wb_frn_history; struct list_head i_lru; struct list_head i_sb_list; union __anonunion____missing_field_name_275 __annonCompField73; u64 i_version; atomic_t i_count; atomic_t i_dio_count; atomic_t i_writecount; atomic_t i_readcount; const struct file_operations *i_fop; struct file_lock_context *i_flctx; struct address_space i_data; struct list_head i_devices; union __anonunion____missing_field_name_276 __annonCompField74; __u32 i_generation; __u32 i_fsnotify_mask; struct hlist_head i_fsnotify_marks; void *i_private; } ; 807 struct fown_struct { rwlock_t lock; struct pid *pid; enum pid_type pid_type; kuid_t uid; kuid_t euid; int signum; } ; 815 struct file_ra_state { unsigned long start; unsigned int size; unsigned int async_size; unsigned int ra_pages; unsigned int mmap_miss; loff_t prev_pos; } ; 838 union __anonunion_f_u_277 { struct llist_node fu_llist; struct callback_head fu_rcuhead; } ; 838 struct file { union __anonunion_f_u_277 f_u; struct path f_path; struct inode *f_inode; const struct file_operations *f_op; spinlock_t f_lock; atomic_long_t f_count; unsigned int f_flags; fmode_t f_mode; struct mutex f_pos_lock; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; u64 f_version; void *f_security; void *private_data; struct list_head f_ep_links; struct list_head f_tfile_llink; struct address_space *f_mapping; } ; 923 typedef void *fl_owner_t; 924 struct file_lock ; 925 struct file_lock_operations { void (*fl_copy_lock)(struct file_lock *, struct file_lock *); void (*fl_release_private)(struct file_lock *); } ; 931 struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock *, struct file_lock *); unsigned long int (*lm_owner_key)(struct file_lock *); fl_owner_t (*lm_get_owner)(fl_owner_t ); void (*lm_put_owner)(fl_owner_t ); void (*lm_notify)(struct file_lock *); int (*lm_grant)(struct file_lock *, int); bool (*lm_break)(struct file_lock *); int (*lm_change)(struct file_lock *, int, struct list_head *); void (*lm_setup)(struct file_lock *, void **); } ; 958 struct nlm_lockowner ; 959 struct nfs_lock_info { u32 state; struct nlm_lockowner *owner; struct list_head list; } ; 14 struct nfs4_lock_state ; 15 struct nfs4_lock_info { struct nfs4_lock_state *owner; } ; 19 struct fasync_struct ; 19 struct __anonstruct_afs_279 { struct list_head link; int state; } ; 19 union __anonunion_fl_u_278 { struct nfs_lock_info nfs_fl; struct nfs4_lock_info nfs4_fl; struct __anonstruct_afs_279 afs; } ; 19 struct file_lock { struct file_lock *fl_next; struct list_head fl_list; struct hlist_node fl_link; struct list_head fl_block; fl_owner_t fl_owner; unsigned int fl_flags; unsigned char fl_type; unsigned int fl_pid; int fl_link_cpu; struct pid *fl_nspid; wait_queue_head_t fl_wait; struct file *fl_file; loff_t fl_start; loff_t fl_end; struct fasync_struct *fl_fasync; unsigned long fl_break_time; unsigned long fl_downgrade_time; const struct file_lock_operations *fl_ops; const struct lock_manager_operations *fl_lmops; union __anonunion_fl_u_278 fl_u; } ; 1011 struct file_lock_context { spinlock_t flc_lock; struct list_head flc_flock; struct list_head flc_posix; struct list_head flc_lease; } ; 1227 struct fasync_struct { spinlock_t fa_lock; int magic; int fa_fd; struct fasync_struct *fa_next; struct file *fa_file; struct callback_head fa_rcu; } ; 1262 struct sb_writers { int frozen; wait_queue_head_t wait_unfrozen; struct percpu_rw_semaphore rw_sem[3U]; } ; 1288 struct super_operations ; 1288 struct xattr_handler ; 1288 struct mtd_info ; 1288 struct super_block { struct list_head s_list; dev_t s_dev; unsigned char s_blocksize_bits; unsigned long s_blocksize; loff_t s_maxbytes; struct file_system_type *s_type; const struct super_operations *s_op; const struct dquot_operations *dq_op; const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_iflags; unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; int s_count; atomic_t s_active; void *s_security; const struct xattr_handler **s_xattr; struct hlist_bl_head s_anon; struct list_head s_mounts; struct block_device *s_bdev; struct backing_dev_info *s_bdi; struct mtd_info *s_mtd; struct hlist_node s_instances; unsigned int s_quota_types; struct quota_info s_dquot; struct sb_writers s_writers; char s_id[32U]; u8 s_uuid[16U]; void *s_fs_info; unsigned int s_max_links; fmode_t s_mode; u32 s_time_gran; struct mutex s_vfs_rename_mutex; char *s_subtype; char *s_options; const struct dentry_operations *s_d_op; int cleancache_poolid; struct shrinker s_shrink; atomic_long_t s_remove_count; int s_readonly_remount; struct workqueue_struct *s_dio_done_wq; struct hlist_head s_pins; struct list_lru s_dentry_lru; struct list_lru s_inode_lru; struct callback_head rcu; struct work_struct destroy_work; struct mutex s_sync_lock; int s_stack_depth; spinlock_t s_inode_list_lock; struct list_head s_inodes; } ; 1537 struct fiemap_extent_info { unsigned int fi_flags; unsigned int fi_extents_mapped; unsigned int fi_extents_max; struct fiemap_extent *fi_extents_start; } ; 1551 struct dir_context ; 1576 struct dir_context { int (*actor)(struct dir_context *, const char *, int, loff_t , u64 , unsigned int); loff_t pos; } ; 1583 struct file_operations { struct module *owner; loff_t (*llseek)(struct file *, loff_t , int); ssize_t (*read)(struct file *, char *, size_t , loff_t *); ssize_t (*write)(struct file *, const char *, size_t , loff_t *); ssize_t (*read_iter)(struct kiocb *, struct iov_iter *); ssize_t (*write_iter)(struct kiocb *, struct iov_iter *); int (*iterate)(struct file *, struct dir_context *); unsigned int (*poll)(struct file *, struct poll_table_struct *); long int (*unlocked_ioctl)(struct file *, unsigned int, unsigned long); long int (*compat_ioctl)(struct file *, unsigned int, unsigned long); int (*mmap)(struct file *, struct vm_area_struct *); int (*open)(struct inode *, struct file *); int (*flush)(struct file *, fl_owner_t ); int (*release)(struct inode *, struct file *); int (*fsync)(struct file *, loff_t , loff_t , int); int (*aio_fsync)(struct kiocb *, int); int (*fasync)(int, struct file *, int); int (*lock)(struct file *, int, struct file_lock *); ssize_t (*sendpage)(struct file *, struct page *, int, size_t , loff_t *, int); unsigned long int (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock)(struct file *, int, struct file_lock *); ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t , unsigned int); ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t , unsigned int); int (*setlease)(struct file *, long, struct file_lock **, void **); long int (*fallocate)(struct file *, int, loff_t , loff_t ); void (*show_fdinfo)(struct seq_file *, struct file *); } ; 1643 struct inode_operations { struct dentry * (*lookup)(struct inode *, struct dentry *, unsigned int); const char * (*follow_link)(struct dentry *, void **); int (*permission)(struct inode *, int); struct posix_acl * (*get_acl)(struct inode *, int); int (*readlink)(struct dentry *, char *, int); void (*put_link)(struct inode *, void *); int (*create)(struct inode *, struct dentry *, umode_t , bool ); int (*link)(struct dentry *, struct inode *, struct dentry *); int (*unlink)(struct inode *, struct dentry *); int (*symlink)(struct inode *, struct dentry *, const char *); int (*mkdir)(struct inode *, struct dentry *, umode_t ); int (*rmdir)(struct inode *, struct dentry *); int (*mknod)(struct inode *, struct dentry *, umode_t , dev_t ); int (*rename)(struct inode *, struct dentry *, struct inode *, struct dentry *); int (*rename2)(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); int (*setattr)(struct dentry *, struct iattr *); int (*getattr)(struct vfsmount *, struct dentry *, struct kstat *); int (*setxattr)(struct dentry *, const char *, const void *, size_t , int); ssize_t (*getxattr)(struct dentry *, const char *, void *, size_t ); ssize_t (*listxattr)(struct dentry *, char *, size_t ); int (*removexattr)(struct dentry *, const char *); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 , u64 ); int (*update_time)(struct inode *, struct timespec *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned int, umode_t , int *); int (*tmpfile)(struct inode *, struct dentry *, umode_t ); int (*set_acl)(struct inode *, struct posix_acl *, int); } ; 1697 struct super_operations { struct inode * (*alloc_inode)(struct super_block *); void (*destroy_inode)(struct inode *); void (*dirty_inode)(struct inode *, int); int (*write_inode)(struct inode *, struct writeback_control *); int (*drop_inode)(struct inode *); void (*evict_inode)(struct inode *); void (*put_super)(struct super_block *); int (*sync_fs)(struct super_block *, int); int (*freeze_super)(struct super_block *); int (*freeze_fs)(struct super_block *); int (*thaw_super)(struct super_block *); int (*unfreeze_fs)(struct super_block *); int (*statfs)(struct dentry *, struct kstatfs *); int (*remount_fs)(struct super_block *, int *, char *); void (*umount_begin)(struct super_block *); int (*show_options)(struct seq_file *, struct dentry *); int (*show_devname)(struct seq_file *, struct dentry *); int (*show_path)(struct seq_file *, struct dentry *); int (*show_stats)(struct seq_file *, struct dentry *); ssize_t (*quota_read)(struct super_block *, int, char *, size_t , loff_t ); ssize_t (*quota_write)(struct super_block *, int, const char *, size_t , loff_t ); struct dquot ** (*get_dquots)(struct inode *); int (*bdev_try_to_free_page)(struct super_block *, struct page *, gfp_t ); long int (*nr_cached_objects)(struct super_block *, struct shrink_control *); long int (*free_cached_objects)(struct super_block *, struct shrink_control *); } ; 1936 struct file_system_type { const char *name; int fs_flags; struct dentry * (*mount)(struct file_system_type *, int, const char *, void *); void (*kill_sb)(struct super_block *); struct module *owner; struct file_system_type *next; struct hlist_head fs_supers; struct lock_class_key s_lock_key; struct lock_class_key s_umount_key; struct lock_class_key s_vfs_rename_key; struct lock_class_key s_writers_key[3U]; struct lock_class_key i_lock_key; struct lock_class_key i_mutex_key; struct lock_class_key i_mutex_dir_key; } ; 276 struct usb_driver ; 277 struct wusb_dev ; 278 struct ep_device ; 279 struct usb_host_endpoint { struct usb_endpoint_descriptor desc; struct usb_ss_ep_comp_descriptor ss_ep_comp; struct list_head urb_list; void *hcpriv; struct ep_device *ep_dev; unsigned char *extra; int extralen; int enabled; int streams; } ; 77 struct usb_host_interface { struct usb_interface_descriptor desc; int extralen; unsigned char *extra; struct usb_host_endpoint *endpoint; char *string; } ; 92 enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; 99 struct usb_interface { struct usb_host_interface *altsetting; struct usb_host_interface *cur_altsetting; unsigned int num_altsetting; struct usb_interface_assoc_descriptor *intf_assoc; int minor; enum usb_interface_condition condition; unsigned char sysfs_files_created; unsigned char ep_devs_created; unsigned char unregistering; unsigned char needs_remote_wakeup; unsigned char needs_altsetting0; unsigned char needs_binding; unsigned char resetting_device; struct device dev; struct device *usb_dev; atomic_t pm_usage_cnt; struct work_struct reset_ws; } ; 201 struct usb_interface_cache { unsigned int num_altsetting; struct kref ref; struct usb_host_interface altsetting[0U]; } ; 256 struct usb_host_config { struct usb_config_descriptor desc; char *string; struct usb_interface_assoc_descriptor *intf_assoc[16U]; struct usb_interface *interface[32U]; struct usb_interface_cache *intf_cache[32U]; unsigned char *extra; int extralen; } ; 320 struct usb_host_bos { struct usb_bos_descriptor *desc; struct usb_ext_cap_descriptor *ext_cap; struct usb_ss_cap_descriptor *ss_cap; struct usb_ss_container_id_descriptor *ss_id; } ; 332 struct usb_devmap { unsigned long devicemap[2U]; } ; 344 struct mon_bus ; 344 struct usb_bus { struct device *controller; int busnum; const char *bus_name; u8 uses_dma; u8 uses_pio_for_control; u8 otg_port; unsigned char is_b_host; unsigned char b_hnp_enable; unsigned char no_stop_on_short; unsigned char no_sg_constraint; unsigned int sg_tablesize; int devnum_next; struct usb_devmap devmap; struct usb_device *root_hub; struct usb_bus *hs_companion; struct list_head bus_list; struct mutex usb_address0_mutex; int bandwidth_allocated; int bandwidth_int_reqs; int bandwidth_isoc_reqs; unsigned int resuming_ports; struct mon_bus *mon_bus; int monitored; } ; 395 struct usb_tt ; 396 enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; 409 struct usb2_lpm_parameters { unsigned int besl; int timeout; } ; 430 struct usb3_lpm_parameters { unsigned int mel; unsigned int pel; unsigned int sel; int timeout; } ; 469 struct usb_device { int devnum; char devpath[16U]; u32 route; enum usb_device_state state; enum usb_device_speed speed; struct usb_tt *tt; int ttport; unsigned int toggle[2U]; struct usb_device *parent; struct usb_bus *bus; struct usb_host_endpoint ep0; struct device dev; struct usb_device_descriptor descriptor; struct usb_host_bos *bos; struct usb_host_config *config; struct usb_host_config *actconfig; struct usb_host_endpoint *ep_in[16U]; struct usb_host_endpoint *ep_out[16U]; char **rawdescriptors; unsigned short bus_mA; u8 portnum; u8 level; unsigned char can_submit; unsigned char persist_enabled; unsigned char have_langid; unsigned char authorized; unsigned char authenticated; unsigned char wusb; unsigned char lpm_capable; unsigned char usb2_hw_lpm_capable; unsigned char usb2_hw_lpm_besl_capable; unsigned char usb2_hw_lpm_enabled; unsigned char usb2_hw_lpm_allowed; unsigned char usb3_lpm_enabled; int string_langid; char *product; char *manufacturer; char *serial; struct list_head filelist; int maxchild; u32 quirks; atomic_t urbnum; unsigned long active_duration; unsigned long connect_time; unsigned char do_remote_wakeup; unsigned char reset_resume; unsigned char port_is_suspended; struct wusb_dev *wusb_dev; int slot_id; enum usb_device_removable removable; struct usb2_lpm_parameters l1_params; struct usb3_lpm_parameters u1_params; struct usb3_lpm_parameters u2_params; unsigned int lpm_disable_count; } ; 819 struct usb_dynids { spinlock_t lock; struct list_head list; } ; 1007 struct usbdrv_wrap { struct device_driver driver; int for_devices; } ; 1017 struct usb_driver { const char *name; int (*probe)(struct usb_interface *, const struct usb_device_id *); void (*disconnect)(struct usb_interface *); int (*unlocked_ioctl)(struct usb_interface *, unsigned int, void *); int (*suspend)(struct usb_interface *, pm_message_t ); int (*resume)(struct usb_interface *); int (*reset_resume)(struct usb_interface *); int (*pre_reset)(struct usb_interface *); int (*post_reset)(struct usb_interface *); const struct usb_device_id *id_table; struct usb_dynids dynids; struct usbdrv_wrap drvwrap; unsigned char no_dynamic_id; unsigned char supports_autosuspend; unsigned char disable_hub_initiated_lpm; unsigned char soft_unbind; } ; 1145 struct usb_class_driver { char *name; char * (*devnode)(struct device *, umode_t *); const struct file_operations *fops; int minor_base; } ; 1200 struct usb_iso_packet_descriptor { unsigned int offset; unsigned int length; unsigned int actual_length; int status; } ; 1242 struct urb ; 1243 struct usb_anchor { struct list_head urb_list; wait_queue_head_t wait; spinlock_t lock; atomic_t suspend_wakeups; unsigned char poisoned; } ; 1262 struct scatterlist ; 1262 struct urb { struct kref kref; void *hcpriv; atomic_t use_count; atomic_t reject; int unlinked; struct list_head urb_list; struct list_head anchor_list; struct usb_anchor *anchor; struct usb_device *dev; struct usb_host_endpoint *ep; unsigned int pipe; unsigned int stream_id; int status; unsigned int transfer_flags; void *transfer_buffer; dma_addr_t transfer_dma; struct scatterlist *sg; int num_mapped_sgs; int num_sgs; u32 transfer_buffer_length; u32 actual_length; unsigned char *setup_packet; dma_addr_t setup_dma; int start_frame; int number_of_packets; int interval; int error_count; void *context; void (*complete)(struct urb *); struct usb_iso_packet_descriptor iso_frame_desc[0U]; } ; 1894 struct pollfd { int fd; short events; short revents; } ; 32 struct poll_table_struct { void (*_qproc)(struct file *, wait_queue_head_t *, struct poll_table_struct *); unsigned long _key; } ; 210 struct vm_fault { unsigned int flags; unsigned long pgoff; void *virtual_address; struct page *cow_page; struct page *page; unsigned long max_pgoff; pte_t *pte; } ; 242 struct vm_operations_struct { void (*open)(struct vm_area_struct *); void (*close)(struct vm_area_struct *); int (*mremap)(struct vm_area_struct *); int (*fault)(struct vm_area_struct *, struct vm_fault *); int (*pmd_fault)(struct vm_area_struct *, unsigned long, pmd_t *, unsigned int); void (*map_pages)(struct vm_area_struct *, struct vm_fault *); int (*page_mkwrite)(struct vm_area_struct *, struct vm_fault *); int (*pfn_mkwrite)(struct vm_area_struct *, struct vm_fault *); int (*access)(struct vm_area_struct *, unsigned long, void *, int, int); const char * (*name)(struct vm_area_struct *); int (*set_policy)(struct vm_area_struct *, struct mempolicy *); struct mempolicy * (*get_policy)(struct vm_area_struct *, unsigned long); struct page * (*find_special_page)(struct vm_area_struct *, unsigned long); } ; 2316 struct scatterlist { unsigned long sg_magic; unsigned long page_link; unsigned int offset; unsigned int length; dma_addr_t dma_address; unsigned int dma_length; } ; 381 struct __kfifo { unsigned int in; unsigned int out; unsigned int mask; unsigned int esize; void *data; } ; 65 union __anonunion____missing_field_name_281 { struct __kfifo kfifo; unsigned char *type; const unsigned char *const_type; char (*rectype)[0U]; void *ptr; const void *ptr_const; } ; 65 struct kfifo { union __anonunion____missing_field_name_281 __annonCompField75; unsigned char buf[0U]; } ; 832 struct lirc_buffer { wait_queue_head_t wait_poll; spinlock_t fifo_lock; unsigned int chunk_size; unsigned int size; struct kfifo fifo; } ; 120 struct rc_dev ; 120 struct lirc_driver { char name[40U]; int minor; __u32 code_length; unsigned int buffer_size; int sample_rate; __u32 features; unsigned int chunk_size; void *data; int min_timeout; int max_timeout; int (*add_to_buf)(void *, struct lirc_buffer *); struct lirc_buffer *rbuf; int (*set_use_inc)(void *); void (*set_use_dec)(void *); struct rc_dev *rdev; const struct file_operations *fops; struct device *dev; struct module *owner; } ; 74 struct rx_data { int count; int prev_bit; int initial_space; } ; 103 struct tx_t { unsigned char data_buf[35U]; struct completion finished; atomic_t busy; int status; } ; 110 struct imon_context { struct usb_device *usbdev; int display; int display_isopen; int ir_isopen; int dev_present; struct mutex ctx_lock; wait_queue_head_t remove_ok; int vfd_proto_6p; struct lirc_driver *driver; struct usb_endpoint_descriptor *rx_endpoint; struct usb_endpoint_descriptor *tx_endpoint; struct urb *rx_urb; struct urb *tx_urb; unsigned char usb_rx_buf[8U]; unsigned char usb_tx_buf[8U]; struct rx_data rx; struct tx_t tx; } ; 135 typedef int ldv_func_ret_type; 1 long int __builtin_expect(long exp, long c); 33 extern struct module __this_module; 142 int printk(const char *, ...); 53 void __dynamic_dev_dbg(struct _ddebug *, const struct device *, const char *, ...); 3 bool ldv_is_err(const void *ptr); 6 long int ldv_ptr_err(const void *ptr); 12 void * memdup_user(const void *, size_t ); 30 void * __memcpy(void *, const void *, size_t ); 65 char * strcpy(char *, const char *); 66 void warn_slowpath_fmt(const char *, const int, const char *, ...); 32 long int PTR_ERR(const void *ptr); 41 bool IS_ERR(const void *ptr); 25 int atomic_read(const atomic_t *v); 37 void atomic_set(atomic_t *v, int i); 119 void __mutex_init(struct mutex *, const char *, struct lock_class_key *); 173 int mutex_trylock(struct mutex *); 176 int ldv_mutex_trylock_8(struct mutex *ldv_func_arg1); 178 void mutex_unlock(struct mutex *); 181 void ldv_mutex_unlock_6(struct mutex *ldv_func_arg1); 185 void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1); 189 void ldv_mutex_unlock_10(struct mutex *ldv_func_arg1); 193 void ldv_mutex_unlock_14(struct mutex *ldv_func_arg1); 197 void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1); 201 void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1); 205 void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1); 209 void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1); 213 void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1); 217 void ldv_mutex_unlock_24(struct mutex *ldv_func_arg1); 221 void ldv_mutex_unlock_26(struct mutex *ldv_func_arg1); 225 void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1); 229 void ldv_mutex_unlock_30(struct mutex *ldv_func_arg1); 233 void ldv_mutex_unlock_33(struct mutex *ldv_func_arg1); 237 void ldv_mutex_unlock_34(struct mutex *ldv_func_arg1); 241 void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1); 18 void mutex_lock(struct mutex *); 21 void ldv_mutex_lock_5(struct mutex *ldv_func_arg1); 25 void ldv_mutex_lock_7(struct mutex *ldv_func_arg1); 29 void ldv_mutex_lock_11(struct mutex *ldv_func_arg1); 33 void ldv_mutex_lock_12(struct mutex *ldv_func_arg1); 37 void ldv_mutex_lock_13(struct mutex *ldv_func_arg1); 41 void ldv_mutex_lock_16(struct mutex *ldv_func_arg1); 45 void ldv_mutex_lock_20(struct mutex *ldv_func_arg1); 49 void ldv_mutex_lock_21(struct mutex *ldv_func_arg1); 53 void ldv_mutex_lock_23(struct mutex *ldv_func_arg1); 57 void ldv_mutex_lock_25(struct mutex *ldv_func_arg1); 61 void ldv_mutex_lock_28(struct mutex *ldv_func_arg1); 65 void ldv_mutex_lock_29(struct mutex *ldv_func_arg1); 69 void ldv_mutex_lock_31(struct mutex *ldv_func_arg1); 73 void ldv_mutex_lock_32(struct mutex *ldv_func_arg1); 78 void ldv_mutex_lock_ctx_lock_of_imon_context(struct mutex *lock); 82 void ldv_mutex_unlock_ctx_lock_of_imon_context(struct mutex *lock); 91 void ldv_mutex_lock_driver_lock(struct mutex *lock); 95 void ldv_mutex_unlock_driver_lock(struct mutex *lock); 104 void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock); 108 void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock); 117 void ldv_mutex_lock_lock(struct mutex *lock); 121 void ldv_mutex_unlock_lock(struct mutex *lock); 130 void ldv_mutex_lock_mutex_of_device(struct mutex *lock); 131 int ldv_mutex_trylock_mutex_of_device(struct mutex *lock); 134 void ldv_mutex_unlock_mutex_of_device(struct mutex *lock); 93 void __raw_spin_lock_init(raw_spinlock_t *, const char *, struct lock_class_key *); 34 unsigned long int _raw_spin_lock_irqsave(raw_spinlock_t *); 45 void _raw_spin_unlock_irqrestore(raw_spinlock_t *, unsigned long); 289 raw_spinlock_t * spinlock_check(spinlock_t *lock); 360 void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags); 72 void __init_waitqueue_head(wait_queue_head_t *, const char *, struct lock_class_key *); 149 void __wake_up(wait_queue_head_t *, unsigned int, int, void *); 73 void init_completion(struct completion *x); 93 int wait_for_completion_interruptible(struct completion *); 106 void complete(struct completion *); 107 void complete_all(struct completion *); 143 void kfree(const void *); 289 void * __kmalloc(size_t , gfp_t ); 428 void * kmalloc(size_t size, gfp_t flags); 591 void * kzalloc(size_t size, gfp_t flags); 437 int usb_endpoint_type(const struct usb_endpoint_descriptor *epd); 888 void * dev_get_drvdata(const struct device *dev); 893 void dev_set_drvdata(struct device *dev, void *data); 1109 void dev_err(const struct device *, const char *, ...); 1111 void dev_warn(const struct device *, const char *, ...); 1115 void _dev_info(const struct device *, const char *, ...); 796 unsigned int iminor(const struct inode *inode); 2669 loff_t noop_llseek(struct file *, loff_t , int); 189 void * usb_get_intfdata(struct usb_interface *intf); 194 void usb_set_intfdata(struct usb_interface *intf, void *data); 616 struct usb_device * interface_to_usbdev(struct usb_interface *intf); 621 struct usb_device * usb_get_dev(struct usb_device *); 764 const struct usb_device_id * usb_match_id(struct usb_interface *, const struct usb_device_id *); 770 struct usb_interface * usb_find_interface(struct usb_driver *, int); 1194 int usb_register_dev(struct usb_interface *, struct usb_class_driver *); 1196 void usb_deregister_dev(struct usb_interface *, struct usb_class_driver *); 1573 void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, void *transfer_buffer, int buffer_length, void (*complete_fn)(struct urb *), void *context, int interval); 1602 struct urb * usb_alloc_urb(int, gfp_t ); 1603 void usb_free_urb(struct urb *); 1606 int usb_submit_urb(struct urb *, gfp_t ); 1608 void usb_kill_urb(struct urb *); 1805 unsigned int __create_pipe(struct usb_device *dev, unsigned int endpoint); 182 int __kfifo_int_must_check_helper(int val); 771 int __kfifo_alloc(struct __kfifo *, unsigned int, size_t , gfp_t ); 774 void __kfifo_free(struct __kfifo *); 779 unsigned int __kfifo_in(struct __kfifo *, const void *, unsigned int); 800 unsigned int __kfifo_in_r(struct __kfifo *, const void *, unsigned int, size_t ); 47 int lirc_buffer_init(struct lirc_buffer *buf, unsigned int chunk_size, unsigned int size); 62 void lirc_buffer_free(struct lirc_buffer *buf); 110 unsigned int lirc_buffer_write(struct lirc_buffer *buf, unsigned char *orig); 199 int lirc_register_driver(struct lirc_driver *); 203 int lirc_unregister_driver(int); 53 int imon_probe(struct usb_interface *interface, const struct usb_device_id *id); 55 void imon_disconnect(struct usb_interface *interface); 56 void usb_rx_callback(struct urb *urb); 57 void usb_tx_callback(struct urb *urb); 60 int imon_resume(struct usb_interface *intf); 61 int imon_suspend(struct usb_interface *intf, pm_message_t message); 64 int display_open(struct inode *inode, struct file *file); 65 int display_close(struct inode *inode, struct file *file); 68 ssize_t vfd_write(struct file *file, const char *buf, size_t n_bytes, loff_t *pos); 72 int ir_open(void *data); 73 void ir_close(void *data); 112 const struct file_operations display_fops = { &__this_module, &noop_llseek, 0, &vfd_write, 0, 0, 0, 0, 0, 0, 0, &display_open, 0, &display_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 130 struct usb_device_id imon_usb_id_table[5U] = { { 3U, 2728U, 32769U, (unsigned short)0, (unsigned short)0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0UL }, { 3U, 1256U, 65328U, (unsigned short)0, (unsigned short)0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0UL }, { 3U, 2728U, 65498U, (unsigned short)0, (unsigned short)0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0UL }, { 3U, 5570U, 65498U, (unsigned short)0, (unsigned short)0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0UL } }; 147 struct usb_device_id vfd_proto_6p_list[2U] = { { 3U, 5570U, 65498U, (unsigned short)0, (unsigned short)0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0UL } }; 153 struct usb_device_id ir_only_list[3U] = { { 3U, 2728U, 32769U, (unsigned short)0, (unsigned short)0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0UL }, { 3U, 1256U, 65328U, (unsigned short)0, (unsigned short)0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0UL } }; 160 struct usb_driver imon_driver = { "lirc_imon", &imon_probe, &imon_disconnect, 0, &imon_suspend, &imon_resume, 0, 0, 0, (const struct usb_device_id *)(&imon_usb_id_table), { { { { { { 0 } }, 0U, 0U, 0, { 0, { 0, 0 }, 0, 0, 0UL } } } }, { 0, 0 } }, { { 0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, 0 }, 0U, 0U, 0U, 0U }; 169 struct usb_class_driver imon_class = { (char *)"lcd%d", 0, &display_fops, 144 }; 176 struct mutex driver_lock = { { 1 }, { { { { { 0 } }, 3735899821U, 4294967295U, (void *)-1, { 0, { 0, 0 }, "driver_lock.wait_lock", 0, 0UL } } } }, { &(driver_lock.wait_list), &(driver_lock.wait_list) }, 0, (void *)(&driver_lock), { 0, { 0, 0 }, "driver_lock", 0, 0UL } }; 178 int debug = 0; 186 const struct usb_device_id __mod_usb__imon_usb_id_table_device_table[5U] = { }; 190 void free_imon_context(struct imon_context *context); 204 void deregister_from_lirc(struct imon_context *context); 322 int send_packet(struct imon_context *context); 553 void submit_data(struct imon_context *context); 576 void imon_incoming_packet(struct imon_context *context, struct urb *urb, int intf); 1002 void ldv_check_final_state(); 1005 void ldv_check_return_value(int); 1008 void ldv_check_return_value_probe(int); 1011 void ldv_initialize(); 1014 void ldv_handler_precall(); 1017 int nondet_int(); 1020 int LDV_IN_INTERRUPT = 0; 1023 void ldv_main0_sequence_infinite_withcheck_stateful(); 10 void ldv_error(); 20 void ldv_stop(); 25 int ldv_undef_int(); 30 int ldv_undef_int_negative(); 14 void * ldv_err_ptr(long error); 28 bool ldv_is_err_or_null(const void *ptr); 8 int ldv_mutex_ctx_lock_of_imon_context = 1; 11 int ldv_mutex_lock_interruptible_ctx_lock_of_imon_context(struct mutex *lock); 37 int ldv_mutex_lock_killable_ctx_lock_of_imon_context(struct mutex *lock); 72 int ldv_mutex_trylock_ctx_lock_of_imon_context(struct mutex *lock); 98 int ldv_atomic_dec_and_mutex_lock_ctx_lock_of_imon_context(atomic_t *cnt, struct mutex *lock); 123 int ldv_mutex_is_locked_ctx_lock_of_imon_context(struct mutex *lock); 163 void ldv_usb_lock_device_ctx_lock_of_imon_context(); 170 int ldv_usb_trylock_device_ctx_lock_of_imon_context(); 176 int ldv_usb_lock_device_for_reset_ctx_lock_of_imon_context(); 189 void ldv_usb_unlock_device_ctx_lock_of_imon_context(); 194 int ldv_mutex_driver_lock = 1; 197 int ldv_mutex_lock_interruptible_driver_lock(struct mutex *lock); 223 int ldv_mutex_lock_killable_driver_lock(struct mutex *lock); 258 int ldv_mutex_trylock_driver_lock(struct mutex *lock); 284 int ldv_atomic_dec_and_mutex_lock_driver_lock(atomic_t *cnt, struct mutex *lock); 309 int ldv_mutex_is_locked_driver_lock(struct mutex *lock); 349 void ldv_usb_lock_device_driver_lock(); 356 int ldv_usb_trylock_device_driver_lock(); 362 int ldv_usb_lock_device_for_reset_driver_lock(); 375 void ldv_usb_unlock_device_driver_lock(); 380 int ldv_mutex_i_mutex_of_inode = 1; 383 int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock); 409 int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock); 444 int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock); 470 int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt, struct mutex *lock); 495 int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock); 535 void ldv_usb_lock_device_i_mutex_of_inode(); 542 int ldv_usb_trylock_device_i_mutex_of_inode(); 548 int ldv_usb_lock_device_for_reset_i_mutex_of_inode(); 561 void ldv_usb_unlock_device_i_mutex_of_inode(); 566 int ldv_mutex_lock = 1; 569 int ldv_mutex_lock_interruptible_lock(struct mutex *lock); 595 int ldv_mutex_lock_killable_lock(struct mutex *lock); 630 int ldv_mutex_trylock_lock(struct mutex *lock); 656 int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt, struct mutex *lock); 681 int ldv_mutex_is_locked_lock(struct mutex *lock); 721 void ldv_usb_lock_device_lock(); 728 int ldv_usb_trylock_device_lock(); 734 int ldv_usb_lock_device_for_reset_lock(); 747 void ldv_usb_unlock_device_lock(); 752 int ldv_mutex_mutex_of_device = 1; 755 int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock); 781 int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock); 842 int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt, struct mutex *lock); 867 int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock); 907 void ldv_usb_lock_device_mutex_of_device(); 914 int ldv_usb_trylock_device_mutex_of_device(); 920 int ldv_usb_lock_device_for_reset_mutex_of_device(); 933 void ldv_usb_unlock_device_mutex_of_device(); return ; } { 1025 struct usb_interface *var_group1; 1026 const struct usb_device_id *var_imon_probe_12_p1; 1027 int res_imon_probe_12; 1028 struct pm_message var_imon_suspend_14_p1; 1029 int ldv_s_imon_driver_usb_driver; 1030 int tmp; 1031 int tmp___0; 1111 ldv_s_imon_driver_usb_driver = 0; 1101 LDV_IN_INTERRUPT = 1; 1110 ldv_initialize() { /* Function call is skipped due to function is undefined */} 1114 goto ldv_32240; 1114 tmp___0 = nondet_int() { /* Function call is skipped due to function is undefined */} 1117 goto ldv_32239; 1115 ldv_32239:; 1118 tmp = nondet_int() { /* Function call is skipped due to function is undefined */} 1118 switch (tmp) { 684 struct usb_device *usbdev; 685 struct usb_host_interface *iface_desc; 686 struct usb_endpoint_descriptor *rx_endpoint; 687 struct usb_endpoint_descriptor *tx_endpoint; 688 struct urb *rx_urb; 689 struct urb *tx_urb; 690 struct lirc_driver *driver; 691 struct lirc_buffer *rbuf; 692 struct device *dev; 693 int ifnum; 694 int lirc_minor; 695 int num_endpts; 696 int retval; 697 int display_ep_found; 698 int ir_ep_found; 699 int vfd_proto_6p; 700 struct imon_context *context; 701 int i; 702 unsigned short vendor; 703 unsigned short product; 704 void *tmp; 705 const struct usb_device_id *tmp___0; 706 struct usb_device *tmp___1; 707 struct _ddebug descriptor; 708 long tmp___2; 709 struct usb_endpoint_descriptor *ep; 710 int ep_dir; 711 int ep_type; 712 struct _ddebug descriptor___0; 713 long tmp___3; 714 struct _ddebug descriptor___1; 715 long tmp___4; 716 struct _ddebug descriptor___2; 717 long tmp___5; 718 const struct usb_device_id *tmp___6; 719 struct _ddebug descriptor___3; 720 long tmp___7; 721 void *tmp___8; 722 void *tmp___9; 723 int tmp___10; 724 struct lock_class_key __key; 725 unsigned int tmp___11; 726 struct _ddebug descriptor___4; 727 long tmp___12; 728 int tmp___13; 685 usbdev = (struct usb_device *)0; 686 iface_desc = (struct usb_host_interface *)0; 687 rx_endpoint = (struct usb_endpoint_descriptor *)0; 688 tx_endpoint = (struct usb_endpoint_descriptor *)0; 689 rx_urb = (struct urb *)0; 690 tx_urb = (struct urb *)0; 691 driver = (struct lirc_driver *)0; 692 rbuf = (struct lirc_buffer *)0; 693 dev = &(interface->dev); 695 lirc_minor = 0; 697 retval = -12; 698 display_ep_found = 0; 699 ir_ep_found = 0; 700 vfd_proto_6p = 0; 701 context = (struct imon_context *)0; { 593 void *tmp; { } 430 void *tmp___2; 445 tmp___2 = __kmalloc(size, flags) { /* Function call is skipped due to function is undefined */} } 708 context = (struct imon_context *)tmp; 716 tmp___0 = usb_match_id(interface, (const struct usb_device_id *)(&ir_only_list)) { /* Function call is skipped due to function is undefined */} 719 context->display = 1; 721 usbdev = usb_get_dev(tmp___1) { /* Function call is skipped due to function is undefined */} 722 iface_desc = interface->cur_altsetting; 723 num_endpts = (int)(iface_desc->desc.bNumEndpoints); 724 ifnum = (int)(iface_desc->desc.bInterfaceNumber); 725 vendor = usbdev->descriptor.idVendor; 726 product = usbdev->descriptor.idProduct; 728 descriptor.modname = "lirc_imon"; 728 descriptor.function = "imon_probe"; 728 descriptor.filename = "/work/ldvuser/ref_launch/work/current--X--drivers--X--defaultlinux-4.3-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.3-rc1.tar.xz/csd_deg_dscv/7460/dscv_tempdir/dscv/ri/32_7a/drivers/staging/media/lirc/lirc_imon.c"; 728 descriptor.format = "%s: found iMON device (%04x:%04x, intf%d)\n"; 728 descriptor.lineno = 729U; 728 descriptor.flags = 0U; 736 i = 0; 736 goto ldv_32167; 738 goto ldv_32166; 737 ldv_32166:; 741 ep = &(((iface_desc->endpoint) + ((unsigned long)i))->desc); 742 int __CPAchecker_TMP_0 = (int)(ep->bEndpointAddress); 742 ep_dir = __CPAchecker_TMP_0 & 128; 749 rx_endpoint = ep; 750 ir_ep_found = 1; 751 descriptor___0.modname = "lirc_imon"; 751 descriptor___0.function = "imon_probe"; 751 descriptor___0.filename = "/work/ldvuser/ref_launch/work/current--X--drivers--X--defaultlinux-4.3-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.3-rc1.tar.xz/csd_deg_dscv/7460/dscv_tempdir/dscv/ri/32_7a/drivers/staging/media/lirc/lirc_imon.c"; 751 descriptor___0.format = "%s: found IR endpoint\n"; 751 descriptor___0.lineno = 751U; 751 descriptor___0.flags = 0U; 736 i = i + 1; 737 ldv_32167:; { 593 void *tmp; { } 430 void *tmp___2; 445 tmp___2 = __kmalloc(size, flags) { /* Function call is skipped due to function is undefined */} } 788 driver = (struct lirc_driver *)tmp___8; { 430 void *tmp___2; 445 tmp___2 = __kmalloc(size, flags) { /* Function call is skipped due to function is undefined */} } 792 rbuf = (struct lirc_buffer *)tmp___9; { 50 int ret; 51 struct lock_class_key __key; 52 struct lock_class_key __key___0; 53 struct kfifo *__tmp; 54 struct __kfifo *__kfifo; 55 int tmp; 53 __init_waitqueue_head(&(buf->wait_poll), "&buf->wait_poll", &__key) { /* Function call is skipped due to function is undefined */} 54 __raw_spin_lock_init(&(buf->fifo_lock.__annonCompField16.rlock), "&(&buf->fifo_lock)->rlock", &__key___0) { /* Function call is skipped due to function is undefined */} 55 buf->chunk_size = chunk_size; 56 buf->size = size; 57 __tmp = &(buf->fifo); 57 __kfifo = &(__tmp->__annonCompField75.kfifo); 57 tmp = __kfifo_alloc(__kfifo, size * chunk_size, 1UL, 208U) { /* Function call is skipped due to function is undefined */} } 800 rx_urb = usb_alloc_urb(0, 208U) { /* Function call is skipped due to function is undefined */} 805 tx_urb = usb_alloc_urb(0, 208U) { /* Function call is skipped due to function is undefined */} 812 __mutex_init(&(context->ctx_lock), "&context->ctx_lock", &__key) { /* Function call is skipped due to function is undefined */} 813 context->vfd_proto_6p = vfd_proto_6p; 815 strcpy((char *)(&(driver->name)), "lirc_imon") { /* Function call is skipped due to function is undefined */} 816 driver->minor = -1; 817 driver->code_length = 32U; 818 driver->sample_rate = 0; 819 driver->features = 262144U; 820 driver->data = (void *)context; 821 driver->rbuf = rbuf; 822 driver->set_use_inc = &ir_open; 823 driver->set_use_dec = &ir_close; 824 driver->dev = &(interface->dev); 825 driver->owner = &__this_module; { 309 mutex_lock(ldv_func_arg1) { /* Function call is skipped due to function is undefined */} } 829 context->driver = driver; 832 lirc_minor = lirc_register_driver(driver) { /* Function call is skipped due to function is undefined */} 838 _dev_info((const struct device *)dev, "Registered iMON driver (lirc minor: %d)\n", lirc_minor) { /* Function call is skipped due to function is undefined */} 842 driver->minor = lirc_minor; 844 context->usbdev = usbdev; 845 context->dev_present = 1; 846 context->rx_endpoint = rx_endpoint; 847 context->rx_urb = rx_urb; 853 context->tx_endpoint = tx_endpoint; 854 context->tx_urb = tx_urb; 859 unsigned int __CPAchecker_TMP_1 = (unsigned int)(context->rx_endpoint->bEndpointAddress); 859 int __CPAchecker_TMP_2 = (int)(context->rx_endpoint->bInterval); 859 -usb_fill_int_urb(context->rx_urb, context->usbdev, tmp___11 | 1073741952U, (void *)(&(context->usb_rx_buf)), 8, &usb_rx_callback, (void *)context, __CPAchecker_TMP_2) { 1578 int _min1; 1579 int _max1; 1580 int _max2; 1581 int _min2; 1582 urb->dev = dev; 1583 urb->pipe = pipe; 1584 urb->transfer_buffer = transfer_buffer; 1585 urb->transfer_buffer_length = (u32 )buffer_length; 1586 urb->complete = complete_fn; 1587 urb->context = context; 1589 unsigned int __CPAchecker_TMP_0 = (unsigned int)(dev->speed); 1589 unsigned int __CPAchecker_TMP_1 = (unsigned int)(dev->speed); 1595 urb->interval = interval; 1598 urb->start_frame = -1; } 866 retval = usb_submit_urb(context->rx_urb, 208U) { /* Function call is skipped due to function is undefined */} { } 885 _dev_info((const struct device *)dev, "iMON device (%04x:%04x, intf%d) on usb<%d:%d> initialized\n", (int)vendor, (int)product, ifnum, usbdev->bus->busnum, usbdev->devnum) { /* Function call is skipped due to function is undefined */} 889 goto driver_unlock; } 1141 ldv_check_return_value(res_imon_probe_12) { /* Function call is skipped due to function is undefined */} 1142 ldv_check_return_value_probe(res_imon_probe_12) { /* Function call is skipped due to function is undefined */} 1145 ldv_s_imon_driver_usb_driver = ldv_s_imon_driver_usb_driver + 1; 1151 goto ldv_32234; 1241 ldv_32234:; 1242 ldv_32240:; 1114 tmp___0 = nondet_int() { /* Function call is skipped due to function is undefined */} 1117 goto ldv_32239; 1115 ldv_32239:; 1118 tmp = nondet_int() { /* Function call is skipped due to function is undefined */} 1118 switch (tmp) 1172 ldv_handler_precall() { /* Function call is skipped due to function is undefined */} { 963 struct imon_context *context; 964 void *tmp; 963 context = (struct imon_context *)tmp; 965 usb_kill_urb(context->rx_urb) { /* Function call is skipped due to function is undefined */} } 1174 ldv_s_imon_driver_usb_driver = ldv_s_imon_driver_usb_driver + 1; 1180 goto ldv_32234; 1241 ldv_32234:; 1242 ldv_32240:; 1114 tmp___0 = nondet_int() { /* Function call is skipped due to function is undefined */} 1117 goto ldv_32239; 1115 ldv_32239:; 1118 tmp = nondet_int() { /* Function call is skipped due to function is undefined */} 1118 switch (tmp) 1201 ldv_handler_precall() { /* Function call is skipped due to function is undefined */} { 972 struct imon_context *context; 973 void *tmp; 974 unsigned int tmp___0; 975 int tmp___1; 972 context = (struct imon_context *)tmp; 974 unsigned int __CPAchecker_TMP_0 = (unsigned int)(context->rx_endpoint->bEndpointAddress); 974 int __CPAchecker_TMP_1 = (int)(context->rx_endpoint->bInterval); 974 -usb_fill_int_urb(context->rx_urb, context->usbdev, tmp___0 | 1073741952U, (void *)(&(context->usb_rx_buf)), 8, &usb_rx_callback, (void *)context, __CPAchecker_TMP_1) { 1578 int _min1; 1579 int _max1; 1580 int _max2; 1581 int _min2; 1582 urb->dev = dev; 1583 urb->pipe = pipe; 1584 urb->transfer_buffer = transfer_buffer; 1585 urb->transfer_buffer_length = (u32 )buffer_length; 1586 urb->complete = complete_fn; 1587 urb->context = context; 1589 unsigned int __CPAchecker_TMP_0 = (unsigned int)(dev->speed); 1589 unsigned int __CPAchecker_TMP_1 = (unsigned int)(dev->speed); 1595 urb->interval = interval; 1598 urb->start_frame = -1; } 981 tmp___1 = usb_submit_urb(context->rx_urb, 32U) { /* Function call is skipped due to function is undefined */} } 1203 ldv_s_imon_driver_usb_driver = ldv_s_imon_driver_usb_driver + 1; 1209 goto ldv_32234; 1241 ldv_32234:; 1242 ldv_32240:; 1114 tmp___0 = nondet_int() { /* Function call is skipped due to function is undefined */} 1117 goto ldv_32239; 1115 ldv_32239:; 1118 tmp = nondet_int() { /* Function call is skipped due to function is undefined */} 1118 switch (tmp) 1230 ldv_handler_precall() { /* Function call is skipped due to function is undefined */} { } 923 struct imon_context *context; 924 int ifnum; 925 void *tmp; 926 int tmp___0; 929 context = (struct imon_context *)tmp; 930 ifnum = (int)(interface->cur_altsetting->desc.bInterfaceNumber); { }} | Source code
1
2 /*
3 * lirc_imon.c: LIRC/VFD/LCD driver for SoundGraph iMON IR/VFD/LCD
4 * including the iMON PAD model
5 *
6 * Copyright(C) 2004 Venky Raju(dev@venky.ws)
7 * Copyright(C) 2009 Jarod Wilson <jarod@wilsonet.com>
8 *
9 * lirc_imon is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/errno.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/usb.h>
32
33 #include <media/lirc.h>
34 #include <media/lirc_dev.h>
35
36
37 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
38 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
39 #define MOD_NAME "lirc_imon"
40 #define MOD_VERSION "0.8"
41
42 #define DISPLAY_MINOR_BASE 144
43 #define DEVICE_NAME "lcd%d"
44
45 #define BUF_CHUNK_SIZE 4
46 #define BUF_SIZE 128
47
48 #define BIT_DURATION 250 /* each bit received is 250us */
49
50 /*** P R O T O T Y P E S ***/
51
52 /* USB Callback prototypes */
53 static int imon_probe(struct usb_interface *interface,
54 const struct usb_device_id *id);
55 static void imon_disconnect(struct usb_interface *interface);
56 static void usb_rx_callback(struct urb *urb);
57 static void usb_tx_callback(struct urb *urb);
58
59 /* suspend/resume support */
60 static int imon_resume(struct usb_interface *intf);
61 static int imon_suspend(struct usb_interface *intf, pm_message_t message);
62
63 /* Display file_operations function prototypes */
64 static int display_open(struct inode *inode, struct file *file);
65 static int display_close(struct inode *inode, struct file *file);
66
67 /* VFD write operation */
68 static ssize_t vfd_write(struct file *file, const char __user *buf,
69 size_t n_bytes, loff_t *pos);
70
71 /* LIRC driver function prototypes */
72 static int ir_open(void *data);
73 static void ir_close(void *data);
74
75 /*** G L O B A L S ***/
76 #define IMON_DATA_BUF_SZ 35
77
78 struct imon_context {
79 struct usb_device *usbdev;
80 /* Newer devices have two interfaces */
81 int display; /* not all controllers do */
82 int display_isopen; /* display port has been opened */
83 int ir_isopen; /* IR port open */
84 int dev_present; /* USB device presence */
85 struct mutex ctx_lock; /* to lock this object */
86 wait_queue_head_t remove_ok; /* For unexpected USB disconnects */
87
88 int vfd_proto_6p; /* some VFD require a 6th packet */
89
90 struct lirc_driver *driver;
91 struct usb_endpoint_descriptor *rx_endpoint;
92 struct usb_endpoint_descriptor *tx_endpoint;
93 struct urb *rx_urb;
94 struct urb *tx_urb;
95 unsigned char usb_rx_buf[8];
96 unsigned char usb_tx_buf[8];
97
98 struct rx_data {
99 int count; /* length of 0 or 1 sequence */
100 int prev_bit; /* logic level of sequence */
101 int initial_space; /* initial space flag */
102 } rx;
103
104 struct tx_t {
105 unsigned char data_buf[IMON_DATA_BUF_SZ]; /* user data buffer */
106 struct completion finished; /* wait for write to finish */
107 atomic_t busy; /* write in progress */
108 int status; /* status of tx completion */
109 } tx;
110 };
111
112 static const struct file_operations display_fops = {
113 .owner = THIS_MODULE,
114 .open = &display_open,
115 .write = &vfd_write,
116 .release = &display_close,
117 .llseek = noop_llseek,
118 };
119
120 /*
121 * USB Device ID for iMON USB Control Boards
122 *
123 * The Windows drivers contain 6 different inf files, more or less one for
124 * each new device until the 0x0034-0x0046 devices, which all use the same
125 * driver. Some of the devices in the 34-46 range haven't been definitively
126 * identified yet. Early devices have either a TriGem Computer, Inc. or a
127 * Samsung vendor ID (0x0aa8 and 0x04e8 respectively), while all later
128 * devices use the SoundGraph vendor ID (0x15c2).
129 */
130 static struct usb_device_id imon_usb_id_table[] = {
131 /* TriGem iMON (IR only) -- TG_iMON.inf */
132 { USB_DEVICE(0x0aa8, 0x8001) },
133
134 /* SoundGraph iMON (IR only) -- sg_imon.inf */
135 { USB_DEVICE(0x04e8, 0xff30) },
136
137 /* SoundGraph iMON VFD (IR & VFD) -- iMON_VFD.inf */
138 { USB_DEVICE(0x0aa8, 0xffda) },
139
140 /* SoundGraph iMON SS (IR & VFD) -- iMON_SS.inf */
141 { USB_DEVICE(0x15c2, 0xffda) },
142
143 {}
144 };
145
146 /* Some iMON VFD models requires a 6th packet for VFD writes */
147 static struct usb_device_id vfd_proto_6p_list[] = {
148 { USB_DEVICE(0x15c2, 0xffda) },
149 {}
150 };
151
152 /* Some iMON devices have no lcd/vfd, don't set one up */
153 static struct usb_device_id ir_only_list[] = {
154 { USB_DEVICE(0x0aa8, 0x8001) },
155 { USB_DEVICE(0x04e8, 0xff30) },
156 {}
157 };
158
159 /* USB Device data */
160 static struct usb_driver imon_driver = {
161 .name = MOD_NAME,
162 .probe = imon_probe,
163 .disconnect = imon_disconnect,
164 .suspend = imon_suspend,
165 .resume = imon_resume,
166 .id_table = imon_usb_id_table,
167 };
168
169 static struct usb_class_driver imon_class = {
170 .name = DEVICE_NAME,
171 .fops = &display_fops,
172 .minor_base = DISPLAY_MINOR_BASE,
173 };
174
175 /* to prevent races between open() and disconnect(), probing, etc */
176 static DEFINE_MUTEX(driver_lock);
177
178 static int debug;
179
180 /*** M O D U L E C O D E ***/
181
182 MODULE_AUTHOR(MOD_AUTHOR);
183 MODULE_DESCRIPTION(MOD_DESC);
184 MODULE_VERSION(MOD_VERSION);
185 MODULE_LICENSE("GPL");
186 MODULE_DEVICE_TABLE(usb, imon_usb_id_table);
187 module_param(debug, int, S_IRUGO | S_IWUSR);
188 MODULE_PARM_DESC(debug, "Debug messages: 0=no, 1=yes(default: no)");
189
190 static void free_imon_context(struct imon_context *context)
191 {
192 struct device *dev = context->driver->dev;
193
194 usb_free_urb(context->tx_urb);
195 usb_free_urb(context->rx_urb);
196 lirc_buffer_free(context->driver->rbuf);
197 kfree(context->driver->rbuf);
198 kfree(context->driver);
199 kfree(context);
200
201 dev_dbg(dev, "%s: iMON context freed\n", __func__);
202 }
203
204 static void deregister_from_lirc(struct imon_context *context)
205 {
206 int retval;
207 int minor = context->driver->minor;
208
209 retval = lirc_unregister_driver(minor);
210 if (retval)
211 dev_err(&context->usbdev->dev,
212 "unable to deregister from lirc(%d)", retval);
213 else
214 dev_info(&context->usbdev->dev,
215 "Deregistered iMON driver (minor:%d)\n", minor);
216
217 }
218
219 /**
220 * Called when the Display device (e.g. /dev/lcd0)
221 * is opened by the application.
222 */
223 static int display_open(struct inode *inode, struct file *file)
224 {
225 struct usb_interface *interface;
226 struct imon_context *context = NULL;
227 int subminor;
228 int retval = 0;
229
230 /* prevent races with disconnect */
231 mutex_lock(&driver_lock);
232
233 subminor = iminor(inode);
234 interface = usb_find_interface(&imon_driver, subminor);
235 if (!interface) {
236 pr_err("%s: could not find interface for minor %d\n",
237 __func__, subminor);
238 retval = -ENODEV;
239 goto exit;
240 }
241 context = usb_get_intfdata(interface);
242
243 if (!context) {
244 dev_err(&interface->dev, "no context found for minor %d\n",
245 subminor);
246 retval = -ENODEV;
247 goto exit;
248 }
249
250 mutex_lock(&context->ctx_lock);
251
252 if (!context->display) {
253 dev_err(&interface->dev,
254 "%s: display not supported by device\n", __func__);
255 retval = -ENODEV;
256 } else if (context->display_isopen) {
257 dev_err(&interface->dev,
258 "%s: display port is already open\n", __func__);
259 retval = -EBUSY;
260 } else {
261 context->display_isopen = 1;
262 file->private_data = context;
263 dev_info(context->driver->dev, "display port opened\n");
264 }
265
266 mutex_unlock(&context->ctx_lock);
267
268 exit:
269 mutex_unlock(&driver_lock);
270 return retval;
271 }
272
273 /**
274 * Called when the display device (e.g. /dev/lcd0)
275 * is closed by the application.
276 */
277 static int display_close(struct inode *inode, struct file *file)
278 {
279 struct imon_context *context = NULL;
280 int retval = 0;
281
282 context = file->private_data;
283
284 if (!context) {
285 pr_err("%s: no context for device\n", __func__);
286 return -ENODEV;
287 }
288
289 mutex_lock(&context->ctx_lock);
290
291 if (!context->display) {
292 dev_err(&context->usbdev->dev,
293 "%s: display not supported by device\n", __func__);
294 retval = -ENODEV;
295 } else if (!context->display_isopen) {
296 dev_err(&context->usbdev->dev,
297 "%s: display is not open\n", __func__);
298 retval = -EIO;
299 } else {
300 context->display_isopen = 0;
301 dev_info(context->driver->dev, "display port closed\n");
302 if (!context->dev_present && !context->ir_isopen) {
303 /*
304 * Device disconnected before close and IR port is not
305 * open. If IR port is open, context will be deleted by
306 * ir_close.
307 */
308 mutex_unlock(&context->ctx_lock);
309 free_imon_context(context);
310 return retval;
311 }
312 }
313
314 mutex_unlock(&context->ctx_lock);
315 return retval;
316 }
317
318 /**
319 * Sends a packet to the device -- this function must be called
320 * with context->ctx_lock held.
321 */
322 static int send_packet(struct imon_context *context)
323 {
324 unsigned int pipe;
325 int interval = 0;
326 int retval = 0;
327
328 /* Check if we need to use control or interrupt urb */
329 pipe = usb_sndintpipe(context->usbdev,
330 context->tx_endpoint->bEndpointAddress);
331 interval = context->tx_endpoint->bInterval;
332
333 usb_fill_int_urb(context->tx_urb, context->usbdev, pipe,
334 context->usb_tx_buf,
335 sizeof(context->usb_tx_buf),
336 usb_tx_callback, context, interval);
337
338 context->tx_urb->actual_length = 0;
339
340 init_completion(&context->tx.finished);
341 atomic_set(&context->tx.busy, 1);
342
343 retval = usb_submit_urb(context->tx_urb, GFP_KERNEL);
344 if (retval) {
345 atomic_set(&context->tx.busy, 0);
346 dev_err(&context->usbdev->dev, "error submitting urb(%d)\n",
347 retval);
348 } else {
349 /* Wait for transmission to complete (or abort) */
350 mutex_unlock(&context->ctx_lock);
351 retval = wait_for_completion_interruptible(
352 &context->tx.finished);
353 if (retval)
354 dev_err(&context->usbdev->dev,
355 "%s: task interrupted\n", __func__);
356 mutex_lock(&context->ctx_lock);
357
358 retval = context->tx.status;
359 if (retval)
360 dev_err(&context->usbdev->dev,
361 "packet tx failed (%d)\n", retval);
362 }
363
364 return retval;
365 }
366
367 /**
368 * Writes data to the VFD. The iMON VFD is 2x16 characters
369 * and requires data in 5 consecutive USB interrupt packets,
370 * each packet but the last carrying 7 bytes.
371 *
372 * I don't know if the VFD board supports features such as
373 * scrolling, clearing rows, blanking, etc. so at
374 * the caller must provide a full screen of data. If fewer
375 * than 32 bytes are provided spaces will be appended to
376 * generate a full screen.
377 */
378 static ssize_t vfd_write(struct file *file, const char __user *buf,
379 size_t n_bytes, loff_t *pos)
380 {
381 int i;
382 int offset;
383 int seq;
384 int retval = 0;
385 struct imon_context *context;
386 const unsigned char vfd_packet6[] = {
387 0x01, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF };
388 int *data_buf = NULL;
389
390 context = file->private_data;
391 if (!context) {
392 pr_err("%s: no context for device\n", __func__);
393 return -ENODEV;
394 }
395
396 mutex_lock(&context->ctx_lock);
397
398 if (!context->dev_present) {
399 dev_err(&context->usbdev->dev,
400 "%s: no iMON device present\n", __func__);
401 retval = -ENODEV;
402 goto exit;
403 }
404
405 if (n_bytes <= 0 || n_bytes > IMON_DATA_BUF_SZ - 3) {
406 dev_err(&context->usbdev->dev,
407 "%s: invalid payload size\n", __func__);
408 retval = -EINVAL;
409 goto exit;
410 }
411
412 data_buf = memdup_user(buf, n_bytes);
413 if (IS_ERR(data_buf)) {
414 retval = PTR_ERR(data_buf);
415 data_buf = NULL;
416 goto exit;
417 }
418
419 memcpy(context->tx.data_buf, data_buf, n_bytes);
420
421 /* Pad with spaces */
422 for (i = n_bytes; i < IMON_DATA_BUF_SZ - 3; ++i)
423 context->tx.data_buf[i] = ' ';
424
425 for (i = IMON_DATA_BUF_SZ - 3; i < IMON_DATA_BUF_SZ; ++i)
426 context->tx.data_buf[i] = 0xFF;
427
428 offset = 0;
429 seq = 0;
430
431 do {
432 memcpy(context->usb_tx_buf, context->tx.data_buf + offset, 7);
433 context->usb_tx_buf[7] = (unsigned char) seq;
434
435 retval = send_packet(context);
436 if (retval) {
437 dev_err(&context->usbdev->dev,
438 "send packet failed for packet #%d\n",
439 seq / 2);
440 goto exit;
441 } else {
442 seq += 2;
443 offset += 7;
444 }
445
446 } while (offset < IMON_DATA_BUF_SZ);
447
448 if (context->vfd_proto_6p) {
449 /* Send packet #6 */
450 memcpy(context->usb_tx_buf, &vfd_packet6, sizeof(vfd_packet6));
451 context->usb_tx_buf[7] = (unsigned char) seq;
452 retval = send_packet(context);
453 if (retval)
454 dev_err(&context->usbdev->dev,
455 "send packet failed for packet #%d\n",
456 seq / 2);
457 }
458
459 exit:
460 mutex_unlock(&context->ctx_lock);
461 kfree(data_buf);
462
463 return (!retval) ? n_bytes : retval;
464 }
465
466 /**
467 * Callback function for USB core API: transmit data
468 */
469 static void usb_tx_callback(struct urb *urb)
470 {
471 struct imon_context *context;
472
473 if (!urb)
474 return;
475 context = (struct imon_context *)urb->context;
476 if (!context)
477 return;
478
479 context->tx.status = urb->status;
480
481 /* notify waiters that write has finished */
482 atomic_set(&context->tx.busy, 0);
483 complete(&context->tx.finished);
484 }
485
486 /**
487 * Called by lirc_dev when the application opens /dev/lirc
488 */
489 static int ir_open(void *data)
490 {
491 struct imon_context *context;
492
493 /* prevent races with disconnect */
494 mutex_lock(&driver_lock);
495
496 context = data;
497
498 /* initial IR protocol decode variables */
499 context->rx.count = 0;
500 context->rx.initial_space = 1;
501 context->rx.prev_bit = 0;
502
503 context->ir_isopen = 1;
504 dev_info(context->driver->dev, "IR port opened\n");
505
506 mutex_unlock(&driver_lock);
507 return 0;
508 }
509
510 /**
511 * Called by lirc_dev when the application closes /dev/lirc
512 */
513 static void ir_close(void *data)
514 {
515 struct imon_context *context;
516
517 context = data;
518 if (!context) {
519 pr_err("%s: no context for device\n", __func__);
520 return;
521 }
522
523 mutex_lock(&context->ctx_lock);
524
525 context->ir_isopen = 0;
526 dev_info(context->driver->dev, "IR port closed\n");
527
528 if (!context->dev_present) {
529 /*
530 * Device disconnected while IR port was still open. Driver
531 * was not deregistered at disconnect time, so do it now.
532 */
533 deregister_from_lirc(context);
534
535 if (!context->display_isopen) {
536 mutex_unlock(&context->ctx_lock);
537 free_imon_context(context);
538 return;
539 }
540 /*
541 * If display port is open, context will be deleted by
542 * display_close
543 */
544 }
545
546 mutex_unlock(&context->ctx_lock);
547 }
548
549 /**
550 * Convert bit count to time duration (in us) and submit
551 * the value to lirc_dev.
552 */
553 static void submit_data(struct imon_context *context)
554 {
555 unsigned char buf[4];
556 int value = context->rx.count;
557 int i;
558
559 dev_dbg(context->driver->dev, "submitting data to LIRC\n");
560
561 value *= BIT_DURATION;
562 value &= PULSE_MASK;
563 if (context->rx.prev_bit)
564 value |= PULSE_BIT;
565
566 for (i = 0; i < 4; ++i)
567 buf[i] = value>>(i*8);
568
569 lirc_buffer_write(context->driver->rbuf, buf);
570 wake_up(&context->driver->rbuf->wait_poll);
571 }
572
573 /**
574 * Process the incoming packet
575 */
576 static void imon_incoming_packet(struct imon_context *context,
577 struct urb *urb, int intf)
578 {
579 int len = urb->actual_length;
580 unsigned char *buf = urb->transfer_buffer;
581 struct device *dev = context->driver->dev;
582 int octet, bit;
583 unsigned char mask;
584
585 /*
586 * just bail out if no listening IR client
587 */
588 if (!context->ir_isopen)
589 return;
590
591 if (len != 8) {
592 dev_warn(dev, "imon %s: invalid incoming packet size (len = %d, intf%d)\n",
593 __func__, len, intf);
594 return;
595 }
596
597 if (debug)
598 dev_info(dev, "raw packet: %*ph\n", len, buf);
599 /*
600 * Translate received data to pulse and space lengths.
601 * Received data is active low, i.e. pulses are 0 and
602 * spaces are 1.
603 *
604 * My original algorithm was essentially similar to
605 * Changwoo Ryu's with the exception that he switched
606 * the incoming bits to active high and also fed an
607 * initial space to LIRC at the start of a new sequence
608 * if the previous bit was a pulse.
609 *
610 * I've decided to adopt his algorithm.
611 */
612
613 if (buf[7] == 1 && context->rx.initial_space) {
614 /* LIRC requires a leading space */
615 context->rx.prev_bit = 0;
616 context->rx.count = 4;
617 submit_data(context);
618 context->rx.count = 0;
619 }
620
621 for (octet = 0; octet < 5; ++octet) {
622 mask = 0x80;
623 for (bit = 0; bit < 8; ++bit) {
624 int curr_bit = !(buf[octet] & mask);
625
626 if (curr_bit != context->rx.prev_bit) {
627 if (context->rx.count) {
628 submit_data(context);
629 context->rx.count = 0;
630 }
631 context->rx.prev_bit = curr_bit;
632 }
633 ++context->rx.count;
634 mask >>= 1;
635 }
636 }
637
638 if (buf[7] == 10) {
639 if (context->rx.count) {
640 submit_data(context);
641 context->rx.count = 0;
642 }
643 context->rx.initial_space = context->rx.prev_bit;
644 }
645 }
646
647 /**
648 * Callback function for USB core API: receive data
649 */
650 static void usb_rx_callback(struct urb *urb)
651 {
652 struct imon_context *context;
653 int intfnum = 0;
654
655 if (!urb)
656 return;
657
658 context = (struct imon_context *)urb->context;
659 if (!context)
660 return;
661
662 switch (urb->status) {
663 case -ENOENT: /* usbcore unlink successful! */
664 return;
665
666 case 0:
667 imon_incoming_packet(context, urb, intfnum);
668 break;
669
670 default:
671 dev_warn(context->driver->dev, "imon %s: status(%d): ignored\n",
672 __func__, urb->status);
673 break;
674 }
675
676 usb_submit_urb(context->rx_urb, GFP_ATOMIC);
677 }
678
679 /**
680 * Callback function for USB core API: Probe
681 */
682 static int imon_probe(struct usb_interface *interface,
683 const struct usb_device_id *id)
684 {
685 struct usb_device *usbdev = NULL;
686 struct usb_host_interface *iface_desc = NULL;
687 struct usb_endpoint_descriptor *rx_endpoint = NULL;
688 struct usb_endpoint_descriptor *tx_endpoint = NULL;
689 struct urb *rx_urb = NULL;
690 struct urb *tx_urb = NULL;
691 struct lirc_driver *driver = NULL;
692 struct lirc_buffer *rbuf = NULL;
693 struct device *dev = &interface->dev;
694 int ifnum;
695 int lirc_minor = 0;
696 int num_endpts;
697 int retval = -ENOMEM;
698 int display_ep_found = 0;
699 int ir_ep_found = 0;
700 int vfd_proto_6p = 0;
701 struct imon_context *context = NULL;
702 int i;
703 u16 vendor, product;
704
705 /* prevent races probing devices w/multiple interfaces */
706 mutex_lock(&driver_lock);
707
708 context = kzalloc(sizeof(struct imon_context), GFP_KERNEL);
709 if (!context)
710 goto driver_unlock;
711
712 /*
713 * Try to auto-detect the type of display if the user hasn't set
714 * it by hand via the display_type modparam. Default is VFD.
715 */
716 if (usb_match_id(interface, ir_only_list))
717 context->display = 0;
718 else
719 context->display = 1;
720
721 usbdev = usb_get_dev(interface_to_usbdev(interface));
722 iface_desc = interface->cur_altsetting;
723 num_endpts = iface_desc->desc.bNumEndpoints;
724 ifnum = iface_desc->desc.bInterfaceNumber;
725 vendor = le16_to_cpu(usbdev->descriptor.idVendor);
726 product = le16_to_cpu(usbdev->descriptor.idProduct);
727
728 dev_dbg(dev, "%s: found iMON device (%04x:%04x, intf%d)\n",
729 __func__, vendor, product, ifnum);
730
731 /*
732 * Scan the endpoint list and set:
733 * first input endpoint = IR endpoint
734 * first output endpoint = display endpoint
735 */
736 for (i = 0; i < num_endpts && !(ir_ep_found && display_ep_found); ++i) {
737 struct usb_endpoint_descriptor *ep;
738 int ep_dir;
739 int ep_type;
740
741 ep = &iface_desc->endpoint[i].desc;
742 ep_dir = ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK;
743 ep_type = usb_endpoint_type(ep);
744
745 if (!ir_ep_found &&
746 ep_dir == USB_DIR_IN &&
747 ep_type == USB_ENDPOINT_XFER_INT) {
748
749 rx_endpoint = ep;
750 ir_ep_found = 1;
751 dev_dbg(dev, "%s: found IR endpoint\n", __func__);
752
753 } else if (!display_ep_found && ep_dir == USB_DIR_OUT &&
754 ep_type == USB_ENDPOINT_XFER_INT) {
755 tx_endpoint = ep;
756 display_ep_found = 1;
757 dev_dbg(dev, "%s: found display endpoint\n", __func__);
758 }
759 }
760
761 /*
762 * Some iMON receivers have no display. Unfortunately, it seems
763 * that SoundGraph recycles device IDs between devices both with
764 * and without... :\
765 */
766 if (context->display == 0) {
767 display_ep_found = 0;
768 dev_dbg(dev, "%s: device has no display\n", __func__);
769 }
770
771 /* Input endpoint is mandatory */
772 if (!ir_ep_found) {
773 dev_err(dev, "%s: no valid input (IR) endpoint found.\n",
774 __func__);
775 retval = -ENODEV;
776 goto free_context;
777 }
778
779 /* Determine if display requires 6 packets */
780 if (display_ep_found) {
781 if (usb_match_id(interface, vfd_proto_6p_list))
782 vfd_proto_6p = 1;
783
784 dev_dbg(dev, "%s: vfd_proto_6p: %d\n",
785 __func__, vfd_proto_6p);
786 }
787
788 driver = kzalloc(sizeof(struct lirc_driver), GFP_KERNEL);
789 if (!driver)
790 goto free_context;
791
792 rbuf = kmalloc(sizeof(struct lirc_buffer), GFP_KERNEL);
793 if (!rbuf)
794 goto free_driver;
795
796 if (lirc_buffer_init(rbuf, BUF_CHUNK_SIZE, BUF_SIZE)) {
797 dev_err(dev, "%s: lirc_buffer_init failed\n", __func__);
798 goto free_rbuf;
799 }
800 rx_urb = usb_alloc_urb(0, GFP_KERNEL);
801 if (!rx_urb) {
802 dev_err(dev, "%s: usb_alloc_urb failed for IR urb\n", __func__);
803 goto free_lirc_buf;
804 }
805 tx_urb = usb_alloc_urb(0, GFP_KERNEL);
806 if (!tx_urb) {
807 dev_err(dev, "%s: usb_alloc_urb failed for display urb\n",
808 __func__);
809 goto free_rx_urb;
810 }
811
812 mutex_init(&context->ctx_lock);
813 context->vfd_proto_6p = vfd_proto_6p;
814
815 strcpy(driver->name, MOD_NAME);
816 driver->minor = -1;
817 driver->code_length = BUF_CHUNK_SIZE * 8;
818 driver->sample_rate = 0;
819 driver->features = LIRC_CAN_REC_MODE2;
820 driver->data = context;
821 driver->rbuf = rbuf;
822 driver->set_use_inc = ir_open;
823 driver->set_use_dec = ir_close;
824 driver->dev = &interface->dev;
825 driver->owner = THIS_MODULE;
826
827 mutex_lock(&context->ctx_lock);
828
829 context->driver = driver;
830 /* start out in keyboard mode */
831
832 lirc_minor = lirc_register_driver(driver);
833 if (lirc_minor < 0) {
834 dev_err(dev, "%s: lirc_register_driver failed\n", __func__);
835 goto free_tx_urb;
836 }
837
838 dev_info(dev, "Registered iMON driver (lirc minor: %d)\n",
839 lirc_minor);
840
841 /* Needed while unregistering! */
842 driver->minor = lirc_minor;
843
844 context->usbdev = usbdev;
845 context->dev_present = 1;
846 context->rx_endpoint = rx_endpoint;
847 context->rx_urb = rx_urb;
848
849 /*
850 * tx is used to send characters to lcd/vfd, associate RF
851 * remotes, set IR protocol, and maybe more...
852 */
853 context->tx_endpoint = tx_endpoint;
854 context->tx_urb = tx_urb;
855
856 if (display_ep_found)
857 context->display = 1;
858
859 usb_fill_int_urb(context->rx_urb, context->usbdev,
860 usb_rcvintpipe(context->usbdev,
861 context->rx_endpoint->bEndpointAddress),
862 context->usb_rx_buf, sizeof(context->usb_rx_buf),
863 usb_rx_callback, context,
864 context->rx_endpoint->bInterval);
865
866 retval = usb_submit_urb(context->rx_urb, GFP_KERNEL);
867 if (retval) {
868 dev_err(dev, "usb_submit_urb failed for intf0 (%d)\n", retval);
869 goto unregister_lirc;
870 }
871
872 usb_set_intfdata(interface, context);
873
874 if (context->display && ifnum == 0) {
875 dev_dbg(dev, "%s: Registering iMON display with sysfs\n",
876 __func__);
877
878 if (usb_register_dev(interface, &imon_class)) {
879 /* Not a fatal error, so ignore */
880 dev_info(dev, "%s: could not get a minor number for display\n",
881 __func__);
882 }
883 }
884
885 dev_info(dev, "iMON device (%04x:%04x, intf%d) on usb<%d:%d> initialized\n",
886 vendor, product, ifnum, usbdev->bus->busnum, usbdev->devnum);
887
888 /* Everything went fine. Just unlock and return retval (with is 0) */
889 goto driver_unlock;
890
891 unregister_lirc:
892 lirc_unregister_driver(driver->minor);
893
894 free_tx_urb:
895 usb_free_urb(tx_urb);
896
897 free_rx_urb:
898 usb_free_urb(rx_urb);
899
900 free_lirc_buf:
901 lirc_buffer_free(rbuf);
902
903 free_rbuf:
904 kfree(rbuf);
905
906 free_driver:
907 kfree(driver);
908 free_context:
909 kfree(context);
910 context = NULL;
911
912 driver_unlock:
913 mutex_unlock(&driver_lock);
914
915 return retval;
916 }
917
918 /**
919 * Callback function for USB core API: disconnect
920 */
921 static void imon_disconnect(struct usb_interface *interface)
922 {
923 struct imon_context *context;
924 int ifnum;
925
926 /* prevent races with ir_open()/display_open() */
927 mutex_lock(&driver_lock);
928
929 context = usb_get_intfdata(interface);
930 ifnum = interface->cur_altsetting->desc.bInterfaceNumber;
931
932 mutex_lock(&context->ctx_lock);
933
934 usb_set_intfdata(interface, NULL);
935
936 /* Abort ongoing write */
937 if (atomic_read(&context->tx.busy)) {
938 usb_kill_urb(context->tx_urb);
939 complete_all(&context->tx.finished);
940 }
941
942 context->dev_present = 0;
943 usb_kill_urb(context->rx_urb);
944 if (context->display)
945 usb_deregister_dev(interface, &imon_class);
946
947 if (!context->ir_isopen && !context->dev_present) {
948 deregister_from_lirc(context);
949 mutex_unlock(&context->ctx_lock);
950 if (!context->display_isopen)
951 free_imon_context(context);
952 } else
953 mutex_unlock(&context->ctx_lock);
954
955 mutex_unlock(&driver_lock);
956
957 dev_info(&interface->dev, "%s: iMON device (intf%d) disconnected\n",
958 __func__, ifnum);
959 }
960
961 static int imon_suspend(struct usb_interface *intf, pm_message_t message)
962 {
963 struct imon_context *context = usb_get_intfdata(intf);
964
965 usb_kill_urb(context->rx_urb);
966
967 return 0;
968 }
969
970 static int imon_resume(struct usb_interface *intf)
971 {
972 struct imon_context *context = usb_get_intfdata(intf);
973
974 usb_fill_int_urb(context->rx_urb, context->usbdev,
975 usb_rcvintpipe(context->usbdev,
976 context->rx_endpoint->bEndpointAddress),
977 context->usb_rx_buf, sizeof(context->usb_rx_buf),
978 usb_rx_callback, context,
979 context->rx_endpoint->bInterval);
980
981 return usb_submit_urb(context->rx_urb, GFP_ATOMIC);
982 }
983
984 module_usb_driver(imon_driver);
985
986
987
988
989
990 /* LDV_COMMENT_BEGIN_MAIN */
991 #ifdef LDV_MAIN0_sequence_infinite_withcheck_stateful
992
993 /*###########################################################################*/
994
995 /*############## Driver Environment Generator 0.2 output ####################*/
996
997 /*###########################################################################*/
998
999
1000
1001 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test if all kernel resources are correctly released by driver before driver will be unloaded. */
1002 void ldv_check_final_state(void);
1003
1004 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result. */
1005 void ldv_check_return_value(int res);
1006
1007 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result of probe() function. */
1008 void ldv_check_return_value_probe(int res);
1009
1010 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Initializes the model. */
1011 void ldv_initialize(void);
1012
1013 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Reinitializes the model between distinct model function calls. */
1014 void ldv_handler_precall(void);
1015
1016 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Returns arbitrary interger value. */
1017 int nondet_int(void);
1018
1019 /* LDV_COMMENT_VAR_DECLARE_LDV Special variable for LDV verifier. */
1020 int LDV_IN_INTERRUPT;
1021
1022 /* LDV_COMMENT_FUNCTION_MAIN Main function for LDV verifier. */
1023 void ldv_main0_sequence_infinite_withcheck_stateful(void) {
1024
1025
1026
1027 /* LDV_COMMENT_BEGIN_VARIABLE_DECLARATION_PART */
1028 /*============================= VARIABLE DECLARATION PART =============================*/
1029 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1030 /* content: static int imon_probe(struct usb_interface *interface, const struct usb_device_id *id)*/
1031 /* LDV_COMMENT_BEGIN_PREP */
1032 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1033 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1034 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1035 #define MOD_NAME "lirc_imon"
1036 #define MOD_VERSION "0.8"
1037 #define DISPLAY_MINOR_BASE 144
1038 #define DEVICE_NAME "lcd%d"
1039 #define BUF_CHUNK_SIZE 4
1040 #define BUF_SIZE 128
1041 #define BIT_DURATION 250
1042 #define IMON_DATA_BUF_SZ 35
1043 /* LDV_COMMENT_END_PREP */
1044 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "imon_probe" */
1045 struct usb_interface * var_group1;
1046 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "imon_probe" */
1047 const struct usb_device_id * var_imon_probe_12_p1;
1048 /* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "imon_probe" */
1049 static int res_imon_probe_12;
1050 /* content: static void imon_disconnect(struct usb_interface *interface)*/
1051 /* LDV_COMMENT_BEGIN_PREP */
1052 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1053 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1054 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1055 #define MOD_NAME "lirc_imon"
1056 #define MOD_VERSION "0.8"
1057 #define DISPLAY_MINOR_BASE 144
1058 #define DEVICE_NAME "lcd%d"
1059 #define BUF_CHUNK_SIZE 4
1060 #define BUF_SIZE 128
1061 #define BIT_DURATION 250
1062 #define IMON_DATA_BUF_SZ 35
1063 /* LDV_COMMENT_END_PREP */
1064 /* content: static int imon_suspend(struct usb_interface *intf, pm_message_t message)*/
1065 /* LDV_COMMENT_BEGIN_PREP */
1066 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1067 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1068 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1069 #define MOD_NAME "lirc_imon"
1070 #define MOD_VERSION "0.8"
1071 #define DISPLAY_MINOR_BASE 144
1072 #define DEVICE_NAME "lcd%d"
1073 #define BUF_CHUNK_SIZE 4
1074 #define BUF_SIZE 128
1075 #define BIT_DURATION 250
1076 #define IMON_DATA_BUF_SZ 35
1077 /* LDV_COMMENT_END_PREP */
1078 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "imon_suspend" */
1079 pm_message_t var_imon_suspend_14_p1;
1080 /* content: static int imon_resume(struct usb_interface *intf)*/
1081 /* LDV_COMMENT_BEGIN_PREP */
1082 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1083 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1084 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1085 #define MOD_NAME "lirc_imon"
1086 #define MOD_VERSION "0.8"
1087 #define DISPLAY_MINOR_BASE 144
1088 #define DEVICE_NAME "lcd%d"
1089 #define BUF_CHUNK_SIZE 4
1090 #define BUF_SIZE 128
1091 #define BIT_DURATION 250
1092 #define IMON_DATA_BUF_SZ 35
1093 /* LDV_COMMENT_END_PREP */
1094
1095
1096
1097
1098 /* LDV_COMMENT_END_VARIABLE_DECLARATION_PART */
1099 /* LDV_COMMENT_BEGIN_VARIABLE_INITIALIZING_PART */
1100 /*============================= VARIABLE INITIALIZING PART =============================*/
1101 LDV_IN_INTERRUPT=1;
1102
1103
1104
1105
1106 /* LDV_COMMENT_END_VARIABLE_INITIALIZING_PART */
1107 /* LDV_COMMENT_BEGIN_FUNCTION_CALL_SECTION */
1108 /*============================= FUNCTION CALL SECTION =============================*/
1109 /* LDV_COMMENT_FUNCTION_CALL Initialize LDV model. */
1110 ldv_initialize();
1111 int ldv_s_imon_driver_usb_driver = 0;
1112
1113
1114 while( nondet_int()
1115 || !(ldv_s_imon_driver_usb_driver == 0)
1116 ) {
1117
1118 switch(nondet_int()) {
1119
1120 case 0: {
1121
1122 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1123 if(ldv_s_imon_driver_usb_driver==0) {
1124
1125 /* content: static int imon_probe(struct usb_interface *interface, const struct usb_device_id *id)*/
1126 /* LDV_COMMENT_BEGIN_PREP */
1127 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1128 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1129 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1130 #define MOD_NAME "lirc_imon"
1131 #define MOD_VERSION "0.8"
1132 #define DISPLAY_MINOR_BASE 144
1133 #define DEVICE_NAME "lcd%d"
1134 #define BUF_CHUNK_SIZE 4
1135 #define BUF_SIZE 128
1136 #define BIT_DURATION 250
1137 #define IMON_DATA_BUF_SZ 35
1138 /* LDV_COMMENT_END_PREP */
1139 /* LDV_COMMENT_FUNCTION_CALL Function from field "probe" from driver structure with callbacks "imon_driver". Standart function test for correct return result. */
1140 res_imon_probe_12 = imon_probe( var_group1, var_imon_probe_12_p1);
1141 ldv_check_return_value(res_imon_probe_12);
1142 ldv_check_return_value_probe(res_imon_probe_12);
1143 if(res_imon_probe_12)
1144 goto ldv_module_exit;
1145 ldv_s_imon_driver_usb_driver++;
1146
1147 }
1148
1149 }
1150
1151 break;
1152 case 1: {
1153
1154 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1155 if(ldv_s_imon_driver_usb_driver==1) {
1156
1157 /* content: static int imon_suspend(struct usb_interface *intf, pm_message_t message)*/
1158 /* LDV_COMMENT_BEGIN_PREP */
1159 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1160 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1161 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1162 #define MOD_NAME "lirc_imon"
1163 #define MOD_VERSION "0.8"
1164 #define DISPLAY_MINOR_BASE 144
1165 #define DEVICE_NAME "lcd%d"
1166 #define BUF_CHUNK_SIZE 4
1167 #define BUF_SIZE 128
1168 #define BIT_DURATION 250
1169 #define IMON_DATA_BUF_SZ 35
1170 /* LDV_COMMENT_END_PREP */
1171 /* LDV_COMMENT_FUNCTION_CALL Function from field "suspend" from driver structure with callbacks "imon_driver" */
1172 ldv_handler_precall();
1173 imon_suspend( var_group1, var_imon_suspend_14_p1);
1174 ldv_s_imon_driver_usb_driver++;
1175
1176 }
1177
1178 }
1179
1180 break;
1181 case 2: {
1182
1183 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1184 if(ldv_s_imon_driver_usb_driver==2) {
1185
1186 /* content: static int imon_resume(struct usb_interface *intf)*/
1187 /* LDV_COMMENT_BEGIN_PREP */
1188 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1189 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1190 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1191 #define MOD_NAME "lirc_imon"
1192 #define MOD_VERSION "0.8"
1193 #define DISPLAY_MINOR_BASE 144
1194 #define DEVICE_NAME "lcd%d"
1195 #define BUF_CHUNK_SIZE 4
1196 #define BUF_SIZE 128
1197 #define BIT_DURATION 250
1198 #define IMON_DATA_BUF_SZ 35
1199 /* LDV_COMMENT_END_PREP */
1200 /* LDV_COMMENT_FUNCTION_CALL Function from field "resume" from driver structure with callbacks "imon_driver" */
1201 ldv_handler_precall();
1202 imon_resume( var_group1);
1203 ldv_s_imon_driver_usb_driver++;
1204
1205 }
1206
1207 }
1208
1209 break;
1210 case 3: {
1211
1212 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1213 if(ldv_s_imon_driver_usb_driver==3) {
1214
1215 /* content: static void imon_disconnect(struct usb_interface *interface)*/
1216 /* LDV_COMMENT_BEGIN_PREP */
1217 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1218 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1219 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1220 #define MOD_NAME "lirc_imon"
1221 #define MOD_VERSION "0.8"
1222 #define DISPLAY_MINOR_BASE 144
1223 #define DEVICE_NAME "lcd%d"
1224 #define BUF_CHUNK_SIZE 4
1225 #define BUF_SIZE 128
1226 #define BIT_DURATION 250
1227 #define IMON_DATA_BUF_SZ 35
1228 /* LDV_COMMENT_END_PREP */
1229 /* LDV_COMMENT_FUNCTION_CALL Function from field "disconnect" from driver structure with callbacks "imon_driver" */
1230 ldv_handler_precall();
1231 imon_disconnect( var_group1);
1232 ldv_s_imon_driver_usb_driver=0;
1233
1234 }
1235
1236 }
1237
1238 break;
1239 default: break;
1240
1241 }
1242
1243 }
1244
1245 ldv_module_exit:
1246
1247 /* LDV_COMMENT_FUNCTION_CALL Checks that all resources and locks are correctly released before the driver will be unloaded. */
1248 ldv_final: ldv_check_final_state();
1249
1250 /* LDV_COMMENT_END_FUNCTION_CALL_SECTION */
1251 return;
1252
1253 }
1254 #endif
1255
1256 /* LDV_COMMENT_END_MAIN */ 1
2 #include <linux/kernel.h>
3 bool ldv_is_err(const void *ptr);
4 bool ldv_is_err_or_null(const void *ptr);
5 void* ldv_err_ptr(long error);
6 long ldv_ptr_err(const void *ptr);
7
8 #include <linux/mutex.h>
9 #include <verifier/rcv.h>
10
11 struct usb_device;
12 extern void __ldv_usb_lock_device(struct usb_device *udev);
13 extern void __ldv_usb_unlock_device(struct usb_device *udev);
14 extern int __ldv_usb_trylock_device(struct usb_device *udev);
15
16 extern int mutex_lock_interruptible(struct mutex *lock);
17 extern int mutex_lock_killable(struct mutex *lock);
18 extern void mutex_lock(struct mutex *lock);
19 extern int ldv_mutex_lock_interruptible_ctx_lock_of_imon_context(struct mutex *lock);
20 extern int ldv_mutex_lock_killable_ctx_lock_of_imon_context(struct mutex *lock);
21 extern void ldv_mutex_lock_nested_ctx_lock_of_imon_context(struct mutex *lock, unsigned int subclass);
22 extern void ldv_mutex_lock_ctx_lock_of_imon_context(struct mutex *lock);
23 extern int ldv_mutex_trylock_ctx_lock_of_imon_context(struct mutex *lock);
24 extern int ldv_atomic_dec_and_mutex_lock_ctx_lock_of_imon_context(atomic_t *cnt, struct mutex *lock);
25 extern int ldv_mutex_is_locked_ctx_lock_of_imon_context(struct mutex *lock);
26 extern void ldv_mutex_unlock_ctx_lock_of_imon_context(struct mutex *lock);
27
28 extern void ldv_usb_lock_device_ctx_lock_of_imon_context(void);
29 extern void ldv_usb_unlock_device_ctx_lock_of_imon_context(void);
30 extern int ldv_usb_trylock_device_ctx_lock_of_imon_context(void);
31 extern int ldv_usb_lock_device_for_reset_ctx_lock_of_imon_context(void);
32 extern int ldv_mutex_lock_interruptible_driver_lock(struct mutex *lock);
33 extern int ldv_mutex_lock_killable_driver_lock(struct mutex *lock);
34 extern void ldv_mutex_lock_nested_driver_lock(struct mutex *lock, unsigned int subclass);
35 extern void ldv_mutex_lock_driver_lock(struct mutex *lock);
36 extern int ldv_mutex_trylock_driver_lock(struct mutex *lock);
37 extern int ldv_atomic_dec_and_mutex_lock_driver_lock(atomic_t *cnt, struct mutex *lock);
38 extern int ldv_mutex_is_locked_driver_lock(struct mutex *lock);
39 extern void ldv_mutex_unlock_driver_lock(struct mutex *lock);
40
41 extern void ldv_usb_lock_device_driver_lock(void);
42 extern void ldv_usb_unlock_device_driver_lock(void);
43 extern int ldv_usb_trylock_device_driver_lock(void);
44 extern int ldv_usb_lock_device_for_reset_driver_lock(void);
45 extern int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock);
46 extern int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock);
47 extern void ldv_mutex_lock_nested_i_mutex_of_inode(struct mutex *lock, unsigned int subclass);
48 extern void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock);
49 extern int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock);
50 extern int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt, struct mutex *lock);
51 extern int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock);
52 extern void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock);
53
54 extern void ldv_usb_lock_device_i_mutex_of_inode(void);
55 extern void ldv_usb_unlock_device_i_mutex_of_inode(void);
56 extern int ldv_usb_trylock_device_i_mutex_of_inode(void);
57 extern int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void);
58 extern int ldv_mutex_lock_interruptible_lock(struct mutex *lock);
59 extern int ldv_mutex_lock_killable_lock(struct mutex *lock);
60 extern void ldv_mutex_lock_nested_lock(struct mutex *lock, unsigned int subclass);
61 extern void ldv_mutex_lock_lock(struct mutex *lock);
62 extern int ldv_mutex_trylock_lock(struct mutex *lock);
63 extern int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt, struct mutex *lock);
64 extern int ldv_mutex_is_locked_lock(struct mutex *lock);
65 extern void ldv_mutex_unlock_lock(struct mutex *lock);
66
67 extern void ldv_usb_lock_device_lock(void);
68 extern void ldv_usb_unlock_device_lock(void);
69 extern int ldv_usb_trylock_device_lock(void);
70 extern int ldv_usb_lock_device_for_reset_lock(void);
71 extern int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock);
72 extern int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock);
73 extern void ldv_mutex_lock_nested_mutex_of_device(struct mutex *lock, unsigned int subclass);
74 extern void ldv_mutex_lock_mutex_of_device(struct mutex *lock);
75 extern int ldv_mutex_trylock_mutex_of_device(struct mutex *lock);
76 extern int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt, struct mutex *lock);
77 extern int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock);
78 extern void ldv_mutex_unlock_mutex_of_device(struct mutex *lock);
79
80 extern void ldv_usb_lock_device_mutex_of_device(void);
81 extern void ldv_usb_unlock_device_mutex_of_device(void);
82 extern int ldv_usb_trylock_device_mutex_of_device(void);
83 extern int ldv_usb_lock_device_for_reset_mutex_of_device(void);
84 #line 1 "/work/ldvuser/ref_launch/work/current--X--drivers--X--defaultlinux-4.3-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.3-rc1.tar.xz/csd_deg_dscv/7460/dscv_tempdir/dscv/ri/32_7a/drivers/staging/media/lirc/lirc_imon.c"
85
86 /*
87 * lirc_imon.c: LIRC/VFD/LCD driver for SoundGraph iMON IR/VFD/LCD
88 * including the iMON PAD model
89 *
90 * Copyright(C) 2004 Venky Raju(dev@venky.ws)
91 * Copyright(C) 2009 Jarod Wilson <jarod@wilsonet.com>
92 *
93 * lirc_imon is free software; you can redistribute it and/or modify
94 * it under the terms of the GNU General Public License as published by
95 * the Free Software Foundation; either version 2 of the License, or
96 * (at your option) any later version.
97 *
98 * This program is distributed in the hope that it will be useful,
99 * but WITHOUT ANY WARRANTY; without even the implied warranty of
100 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
101 * GNU General Public License for more details.
102 *
103 * You should have received a copy of the GNU General Public License
104 * along with this program; if not, write to the Free Software
105 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
106 */
107
108 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
109
110 #include <linux/errno.h>
111 #include <linux/kernel.h>
112 #include <linux/module.h>
113 #include <linux/slab.h>
114 #include <linux/uaccess.h>
115 #include <linux/usb.h>
116
117 #include <media/lirc.h>
118 #include <media/lirc_dev.h>
119
120
121 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
122 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
123 #define MOD_NAME "lirc_imon"
124 #define MOD_VERSION "0.8"
125
126 #define DISPLAY_MINOR_BASE 144
127 #define DEVICE_NAME "lcd%d"
128
129 #define BUF_CHUNK_SIZE 4
130 #define BUF_SIZE 128
131
132 #define BIT_DURATION 250 /* each bit received is 250us */
133
134 /*** P R O T O T Y P E S ***/
135
136 /* USB Callback prototypes */
137 static int imon_probe(struct usb_interface *interface,
138 const struct usb_device_id *id);
139 static void imon_disconnect(struct usb_interface *interface);
140 static void usb_rx_callback(struct urb *urb);
141 static void usb_tx_callback(struct urb *urb);
142
143 /* suspend/resume support */
144 static int imon_resume(struct usb_interface *intf);
145 static int imon_suspend(struct usb_interface *intf, pm_message_t message);
146
147 /* Display file_operations function prototypes */
148 static int display_open(struct inode *inode, struct file *file);
149 static int display_close(struct inode *inode, struct file *file);
150
151 /* VFD write operation */
152 static ssize_t vfd_write(struct file *file, const char __user *buf,
153 size_t n_bytes, loff_t *pos);
154
155 /* LIRC driver function prototypes */
156 static int ir_open(void *data);
157 static void ir_close(void *data);
158
159 /*** G L O B A L S ***/
160 #define IMON_DATA_BUF_SZ 35
161
162 struct imon_context {
163 struct usb_device *usbdev;
164 /* Newer devices have two interfaces */
165 int display; /* not all controllers do */
166 int display_isopen; /* display port has been opened */
167 int ir_isopen; /* IR port open */
168 int dev_present; /* USB device presence */
169 struct mutex ctx_lock; /* to lock this object */
170 wait_queue_head_t remove_ok; /* For unexpected USB disconnects */
171
172 int vfd_proto_6p; /* some VFD require a 6th packet */
173
174 struct lirc_driver *driver;
175 struct usb_endpoint_descriptor *rx_endpoint;
176 struct usb_endpoint_descriptor *tx_endpoint;
177 struct urb *rx_urb;
178 struct urb *tx_urb;
179 unsigned char usb_rx_buf[8];
180 unsigned char usb_tx_buf[8];
181
182 struct rx_data {
183 int count; /* length of 0 or 1 sequence */
184 int prev_bit; /* logic level of sequence */
185 int initial_space; /* initial space flag */
186 } rx;
187
188 struct tx_t {
189 unsigned char data_buf[IMON_DATA_BUF_SZ]; /* user data buffer */
190 struct completion finished; /* wait for write to finish */
191 atomic_t busy; /* write in progress */
192 int status; /* status of tx completion */
193 } tx;
194 };
195
196 static const struct file_operations display_fops = {
197 .owner = THIS_MODULE,
198 .open = &display_open,
199 .write = &vfd_write,
200 .release = &display_close,
201 .llseek = noop_llseek,
202 };
203
204 /*
205 * USB Device ID for iMON USB Control Boards
206 *
207 * The Windows drivers contain 6 different inf files, more or less one for
208 * each new device until the 0x0034-0x0046 devices, which all use the same
209 * driver. Some of the devices in the 34-46 range haven't been definitively
210 * identified yet. Early devices have either a TriGem Computer, Inc. or a
211 * Samsung vendor ID (0x0aa8 and 0x04e8 respectively), while all later
212 * devices use the SoundGraph vendor ID (0x15c2).
213 */
214 static struct usb_device_id imon_usb_id_table[] = {
215 /* TriGem iMON (IR only) -- TG_iMON.inf */
216 { USB_DEVICE(0x0aa8, 0x8001) },
217
218 /* SoundGraph iMON (IR only) -- sg_imon.inf */
219 { USB_DEVICE(0x04e8, 0xff30) },
220
221 /* SoundGraph iMON VFD (IR & VFD) -- iMON_VFD.inf */
222 { USB_DEVICE(0x0aa8, 0xffda) },
223
224 /* SoundGraph iMON SS (IR & VFD) -- iMON_SS.inf */
225 { USB_DEVICE(0x15c2, 0xffda) },
226
227 {}
228 };
229
230 /* Some iMON VFD models requires a 6th packet for VFD writes */
231 static struct usb_device_id vfd_proto_6p_list[] = {
232 { USB_DEVICE(0x15c2, 0xffda) },
233 {}
234 };
235
236 /* Some iMON devices have no lcd/vfd, don't set one up */
237 static struct usb_device_id ir_only_list[] = {
238 { USB_DEVICE(0x0aa8, 0x8001) },
239 { USB_DEVICE(0x04e8, 0xff30) },
240 {}
241 };
242
243 /* USB Device data */
244 static struct usb_driver imon_driver = {
245 .name = MOD_NAME,
246 .probe = imon_probe,
247 .disconnect = imon_disconnect,
248 .suspend = imon_suspend,
249 .resume = imon_resume,
250 .id_table = imon_usb_id_table,
251 };
252
253 static struct usb_class_driver imon_class = {
254 .name = DEVICE_NAME,
255 .fops = &display_fops,
256 .minor_base = DISPLAY_MINOR_BASE,
257 };
258
259 /* to prevent races between open() and disconnect(), probing, etc */
260 static DEFINE_MUTEX(driver_lock);
261
262 static int debug;
263
264 /*** M O D U L E C O D E ***/
265
266 MODULE_AUTHOR(MOD_AUTHOR);
267 MODULE_DESCRIPTION(MOD_DESC);
268 MODULE_VERSION(MOD_VERSION);
269 MODULE_LICENSE("GPL");
270 MODULE_DEVICE_TABLE(usb, imon_usb_id_table);
271 module_param(debug, int, S_IRUGO | S_IWUSR);
272 MODULE_PARM_DESC(debug, "Debug messages: 0=no, 1=yes(default: no)");
273
274 static void free_imon_context(struct imon_context *context)
275 {
276 struct device *dev = context->driver->dev;
277
278 usb_free_urb(context->tx_urb);
279 usb_free_urb(context->rx_urb);
280 lirc_buffer_free(context->driver->rbuf);
281 kfree(context->driver->rbuf);
282 kfree(context->driver);
283 kfree(context);
284
285 dev_dbg(dev, "%s: iMON context freed\n", __func__);
286 }
287
288 static void deregister_from_lirc(struct imon_context *context)
289 {
290 int retval;
291 int minor = context->driver->minor;
292
293 retval = lirc_unregister_driver(minor);
294 if (retval)
295 dev_err(&context->usbdev->dev,
296 "unable to deregister from lirc(%d)", retval);
297 else
298 dev_info(&context->usbdev->dev,
299 "Deregistered iMON driver (minor:%d)\n", minor);
300
301 }
302
303 /**
304 * Called when the Display device (e.g. /dev/lcd0)
305 * is opened by the application.
306 */
307 static int display_open(struct inode *inode, struct file *file)
308 {
309 struct usb_interface *interface;
310 struct imon_context *context = NULL;
311 int subminor;
312 int retval = 0;
313
314 /* prevent races with disconnect */
315 mutex_lock(&driver_lock);
316
317 subminor = iminor(inode);
318 interface = usb_find_interface(&imon_driver, subminor);
319 if (!interface) {
320 pr_err("%s: could not find interface for minor %d\n",
321 __func__, subminor);
322 retval = -ENODEV;
323 goto exit;
324 }
325 context = usb_get_intfdata(interface);
326
327 if (!context) {
328 dev_err(&interface->dev, "no context found for minor %d\n",
329 subminor);
330 retval = -ENODEV;
331 goto exit;
332 }
333
334 mutex_lock(&context->ctx_lock);
335
336 if (!context->display) {
337 dev_err(&interface->dev,
338 "%s: display not supported by device\n", __func__);
339 retval = -ENODEV;
340 } else if (context->display_isopen) {
341 dev_err(&interface->dev,
342 "%s: display port is already open\n", __func__);
343 retval = -EBUSY;
344 } else {
345 context->display_isopen = 1;
346 file->private_data = context;
347 dev_info(context->driver->dev, "display port opened\n");
348 }
349
350 mutex_unlock(&context->ctx_lock);
351
352 exit:
353 mutex_unlock(&driver_lock);
354 return retval;
355 }
356
357 /**
358 * Called when the display device (e.g. /dev/lcd0)
359 * is closed by the application.
360 */
361 static int display_close(struct inode *inode, struct file *file)
362 {
363 struct imon_context *context = NULL;
364 int retval = 0;
365
366 context = file->private_data;
367
368 if (!context) {
369 pr_err("%s: no context for device\n", __func__);
370 return -ENODEV;
371 }
372
373 mutex_lock(&context->ctx_lock);
374
375 if (!context->display) {
376 dev_err(&context->usbdev->dev,
377 "%s: display not supported by device\n", __func__);
378 retval = -ENODEV;
379 } else if (!context->display_isopen) {
380 dev_err(&context->usbdev->dev,
381 "%s: display is not open\n", __func__);
382 retval = -EIO;
383 } else {
384 context->display_isopen = 0;
385 dev_info(context->driver->dev, "display port closed\n");
386 if (!context->dev_present && !context->ir_isopen) {
387 /*
388 * Device disconnected before close and IR port is not
389 * open. If IR port is open, context will be deleted by
390 * ir_close.
391 */
392 mutex_unlock(&context->ctx_lock);
393 free_imon_context(context);
394 return retval;
395 }
396 }
397
398 mutex_unlock(&context->ctx_lock);
399 return retval;
400 }
401
402 /**
403 * Sends a packet to the device -- this function must be called
404 * with context->ctx_lock held.
405 */
406 static int send_packet(struct imon_context *context)
407 {
408 unsigned int pipe;
409 int interval = 0;
410 int retval = 0;
411
412 /* Check if we need to use control or interrupt urb */
413 pipe = usb_sndintpipe(context->usbdev,
414 context->tx_endpoint->bEndpointAddress);
415 interval = context->tx_endpoint->bInterval;
416
417 usb_fill_int_urb(context->tx_urb, context->usbdev, pipe,
418 context->usb_tx_buf,
419 sizeof(context->usb_tx_buf),
420 usb_tx_callback, context, interval);
421
422 context->tx_urb->actual_length = 0;
423
424 init_completion(&context->tx.finished);
425 atomic_set(&context->tx.busy, 1);
426
427 retval = usb_submit_urb(context->tx_urb, GFP_KERNEL);
428 if (retval) {
429 atomic_set(&context->tx.busy, 0);
430 dev_err(&context->usbdev->dev, "error submitting urb(%d)\n",
431 retval);
432 } else {
433 /* Wait for transmission to complete (or abort) */
434 mutex_unlock(&context->ctx_lock);
435 retval = wait_for_completion_interruptible(
436 &context->tx.finished);
437 if (retval)
438 dev_err(&context->usbdev->dev,
439 "%s: task interrupted\n", __func__);
440 mutex_lock(&context->ctx_lock);
441
442 retval = context->tx.status;
443 if (retval)
444 dev_err(&context->usbdev->dev,
445 "packet tx failed (%d)\n", retval);
446 }
447
448 return retval;
449 }
450
451 /**
452 * Writes data to the VFD. The iMON VFD is 2x16 characters
453 * and requires data in 5 consecutive USB interrupt packets,
454 * each packet but the last carrying 7 bytes.
455 *
456 * I don't know if the VFD board supports features such as
457 * scrolling, clearing rows, blanking, etc. so at
458 * the caller must provide a full screen of data. If fewer
459 * than 32 bytes are provided spaces will be appended to
460 * generate a full screen.
461 */
462 static ssize_t vfd_write(struct file *file, const char __user *buf,
463 size_t n_bytes, loff_t *pos)
464 {
465 int i;
466 int offset;
467 int seq;
468 int retval = 0;
469 struct imon_context *context;
470 const unsigned char vfd_packet6[] = {
471 0x01, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF };
472 int *data_buf = NULL;
473
474 context = file->private_data;
475 if (!context) {
476 pr_err("%s: no context for device\n", __func__);
477 return -ENODEV;
478 }
479
480 mutex_lock(&context->ctx_lock);
481
482 if (!context->dev_present) {
483 dev_err(&context->usbdev->dev,
484 "%s: no iMON device present\n", __func__);
485 retval = -ENODEV;
486 goto exit;
487 }
488
489 if (n_bytes <= 0 || n_bytes > IMON_DATA_BUF_SZ - 3) {
490 dev_err(&context->usbdev->dev,
491 "%s: invalid payload size\n", __func__);
492 retval = -EINVAL;
493 goto exit;
494 }
495
496 data_buf = memdup_user(buf, n_bytes);
497 if (IS_ERR(data_buf)) {
498 retval = PTR_ERR(data_buf);
499 data_buf = NULL;
500 goto exit;
501 }
502
503 memcpy(context->tx.data_buf, data_buf, n_bytes);
504
505 /* Pad with spaces */
506 for (i = n_bytes; i < IMON_DATA_BUF_SZ - 3; ++i)
507 context->tx.data_buf[i] = ' ';
508
509 for (i = IMON_DATA_BUF_SZ - 3; i < IMON_DATA_BUF_SZ; ++i)
510 context->tx.data_buf[i] = 0xFF;
511
512 offset = 0;
513 seq = 0;
514
515 do {
516 memcpy(context->usb_tx_buf, context->tx.data_buf + offset, 7);
517 context->usb_tx_buf[7] = (unsigned char) seq;
518
519 retval = send_packet(context);
520 if (retval) {
521 dev_err(&context->usbdev->dev,
522 "send packet failed for packet #%d\n",
523 seq / 2);
524 goto exit;
525 } else {
526 seq += 2;
527 offset += 7;
528 }
529
530 } while (offset < IMON_DATA_BUF_SZ);
531
532 if (context->vfd_proto_6p) {
533 /* Send packet #6 */
534 memcpy(context->usb_tx_buf, &vfd_packet6, sizeof(vfd_packet6));
535 context->usb_tx_buf[7] = (unsigned char) seq;
536 retval = send_packet(context);
537 if (retval)
538 dev_err(&context->usbdev->dev,
539 "send packet failed for packet #%d\n",
540 seq / 2);
541 }
542
543 exit:
544 mutex_unlock(&context->ctx_lock);
545 kfree(data_buf);
546
547 return (!retval) ? n_bytes : retval;
548 }
549
550 /**
551 * Callback function for USB core API: transmit data
552 */
553 static void usb_tx_callback(struct urb *urb)
554 {
555 struct imon_context *context;
556
557 if (!urb)
558 return;
559 context = (struct imon_context *)urb->context;
560 if (!context)
561 return;
562
563 context->tx.status = urb->status;
564
565 /* notify waiters that write has finished */
566 atomic_set(&context->tx.busy, 0);
567 complete(&context->tx.finished);
568 }
569
570 /**
571 * Called by lirc_dev when the application opens /dev/lirc
572 */
573 static int ir_open(void *data)
574 {
575 struct imon_context *context;
576
577 /* prevent races with disconnect */
578 mutex_lock(&driver_lock);
579
580 context = data;
581
582 /* initial IR protocol decode variables */
583 context->rx.count = 0;
584 context->rx.initial_space = 1;
585 context->rx.prev_bit = 0;
586
587 context->ir_isopen = 1;
588 dev_info(context->driver->dev, "IR port opened\n");
589
590 mutex_unlock(&driver_lock);
591 return 0;
592 }
593
594 /**
595 * Called by lirc_dev when the application closes /dev/lirc
596 */
597 static void ir_close(void *data)
598 {
599 struct imon_context *context;
600
601 context = data;
602 if (!context) {
603 pr_err("%s: no context for device\n", __func__);
604 return;
605 }
606
607 mutex_lock(&context->ctx_lock);
608
609 context->ir_isopen = 0;
610 dev_info(context->driver->dev, "IR port closed\n");
611
612 if (!context->dev_present) {
613 /*
614 * Device disconnected while IR port was still open. Driver
615 * was not deregistered at disconnect time, so do it now.
616 */
617 deregister_from_lirc(context);
618
619 if (!context->display_isopen) {
620 mutex_unlock(&context->ctx_lock);
621 free_imon_context(context);
622 return;
623 }
624 /*
625 * If display port is open, context will be deleted by
626 * display_close
627 */
628 }
629
630 mutex_unlock(&context->ctx_lock);
631 }
632
633 /**
634 * Convert bit count to time duration (in us) and submit
635 * the value to lirc_dev.
636 */
637 static void submit_data(struct imon_context *context)
638 {
639 unsigned char buf[4];
640 int value = context->rx.count;
641 int i;
642
643 dev_dbg(context->driver->dev, "submitting data to LIRC\n");
644
645 value *= BIT_DURATION;
646 value &= PULSE_MASK;
647 if (context->rx.prev_bit)
648 value |= PULSE_BIT;
649
650 for (i = 0; i < 4; ++i)
651 buf[i] = value>>(i*8);
652
653 lirc_buffer_write(context->driver->rbuf, buf);
654 wake_up(&context->driver->rbuf->wait_poll);
655 }
656
657 /**
658 * Process the incoming packet
659 */
660 static void imon_incoming_packet(struct imon_context *context,
661 struct urb *urb, int intf)
662 {
663 int len = urb->actual_length;
664 unsigned char *buf = urb->transfer_buffer;
665 struct device *dev = context->driver->dev;
666 int octet, bit;
667 unsigned char mask;
668
669 /*
670 * just bail out if no listening IR client
671 */
672 if (!context->ir_isopen)
673 return;
674
675 if (len != 8) {
676 dev_warn(dev, "imon %s: invalid incoming packet size (len = %d, intf%d)\n",
677 __func__, len, intf);
678 return;
679 }
680
681 if (debug)
682 dev_info(dev, "raw packet: %*ph\n", len, buf);
683 /*
684 * Translate received data to pulse and space lengths.
685 * Received data is active low, i.e. pulses are 0 and
686 * spaces are 1.
687 *
688 * My original algorithm was essentially similar to
689 * Changwoo Ryu's with the exception that he switched
690 * the incoming bits to active high and also fed an
691 * initial space to LIRC at the start of a new sequence
692 * if the previous bit was a pulse.
693 *
694 * I've decided to adopt his algorithm.
695 */
696
697 if (buf[7] == 1 && context->rx.initial_space) {
698 /* LIRC requires a leading space */
699 context->rx.prev_bit = 0;
700 context->rx.count = 4;
701 submit_data(context);
702 context->rx.count = 0;
703 }
704
705 for (octet = 0; octet < 5; ++octet) {
706 mask = 0x80;
707 for (bit = 0; bit < 8; ++bit) {
708 int curr_bit = !(buf[octet] & mask);
709
710 if (curr_bit != context->rx.prev_bit) {
711 if (context->rx.count) {
712 submit_data(context);
713 context->rx.count = 0;
714 }
715 context->rx.prev_bit = curr_bit;
716 }
717 ++context->rx.count;
718 mask >>= 1;
719 }
720 }
721
722 if (buf[7] == 10) {
723 if (context->rx.count) {
724 submit_data(context);
725 context->rx.count = 0;
726 }
727 context->rx.initial_space = context->rx.prev_bit;
728 }
729 }
730
731 /**
732 * Callback function for USB core API: receive data
733 */
734 static void usb_rx_callback(struct urb *urb)
735 {
736 struct imon_context *context;
737 int intfnum = 0;
738
739 if (!urb)
740 return;
741
742 context = (struct imon_context *)urb->context;
743 if (!context)
744 return;
745
746 switch (urb->status) {
747 case -ENOENT: /* usbcore unlink successful! */
748 return;
749
750 case 0:
751 imon_incoming_packet(context, urb, intfnum);
752 break;
753
754 default:
755 dev_warn(context->driver->dev, "imon %s: status(%d): ignored\n",
756 __func__, urb->status);
757 break;
758 }
759
760 usb_submit_urb(context->rx_urb, GFP_ATOMIC);
761 }
762
763 /**
764 * Callback function for USB core API: Probe
765 */
766 static int imon_probe(struct usb_interface *interface,
767 const struct usb_device_id *id)
768 {
769 struct usb_device *usbdev = NULL;
770 struct usb_host_interface *iface_desc = NULL;
771 struct usb_endpoint_descriptor *rx_endpoint = NULL;
772 struct usb_endpoint_descriptor *tx_endpoint = NULL;
773 struct urb *rx_urb = NULL;
774 struct urb *tx_urb = NULL;
775 struct lirc_driver *driver = NULL;
776 struct lirc_buffer *rbuf = NULL;
777 struct device *dev = &interface->dev;
778 int ifnum;
779 int lirc_minor = 0;
780 int num_endpts;
781 int retval = -ENOMEM;
782 int display_ep_found = 0;
783 int ir_ep_found = 0;
784 int vfd_proto_6p = 0;
785 struct imon_context *context = NULL;
786 int i;
787 u16 vendor, product;
788
789 /* prevent races probing devices w/multiple interfaces */
790 mutex_lock(&driver_lock);
791
792 context = kzalloc(sizeof(struct imon_context), GFP_KERNEL);
793 if (!context)
794 goto driver_unlock;
795
796 /*
797 * Try to auto-detect the type of display if the user hasn't set
798 * it by hand via the display_type modparam. Default is VFD.
799 */
800 if (usb_match_id(interface, ir_only_list))
801 context->display = 0;
802 else
803 context->display = 1;
804
805 usbdev = usb_get_dev(interface_to_usbdev(interface));
806 iface_desc = interface->cur_altsetting;
807 num_endpts = iface_desc->desc.bNumEndpoints;
808 ifnum = iface_desc->desc.bInterfaceNumber;
809 vendor = le16_to_cpu(usbdev->descriptor.idVendor);
810 product = le16_to_cpu(usbdev->descriptor.idProduct);
811
812 dev_dbg(dev, "%s: found iMON device (%04x:%04x, intf%d)\n",
813 __func__, vendor, product, ifnum);
814
815 /*
816 * Scan the endpoint list and set:
817 * first input endpoint = IR endpoint
818 * first output endpoint = display endpoint
819 */
820 for (i = 0; i < num_endpts && !(ir_ep_found && display_ep_found); ++i) {
821 struct usb_endpoint_descriptor *ep;
822 int ep_dir;
823 int ep_type;
824
825 ep = &iface_desc->endpoint[i].desc;
826 ep_dir = ep->bEndpointAddress & USB_ENDPOINT_DIR_MASK;
827 ep_type = usb_endpoint_type(ep);
828
829 if (!ir_ep_found &&
830 ep_dir == USB_DIR_IN &&
831 ep_type == USB_ENDPOINT_XFER_INT) {
832
833 rx_endpoint = ep;
834 ir_ep_found = 1;
835 dev_dbg(dev, "%s: found IR endpoint\n", __func__);
836
837 } else if (!display_ep_found && ep_dir == USB_DIR_OUT &&
838 ep_type == USB_ENDPOINT_XFER_INT) {
839 tx_endpoint = ep;
840 display_ep_found = 1;
841 dev_dbg(dev, "%s: found display endpoint\n", __func__);
842 }
843 }
844
845 /*
846 * Some iMON receivers have no display. Unfortunately, it seems
847 * that SoundGraph recycles device IDs between devices both with
848 * and without... :\
849 */
850 if (context->display == 0) {
851 display_ep_found = 0;
852 dev_dbg(dev, "%s: device has no display\n", __func__);
853 }
854
855 /* Input endpoint is mandatory */
856 if (!ir_ep_found) {
857 dev_err(dev, "%s: no valid input (IR) endpoint found.\n",
858 __func__);
859 retval = -ENODEV;
860 goto free_context;
861 }
862
863 /* Determine if display requires 6 packets */
864 if (display_ep_found) {
865 if (usb_match_id(interface, vfd_proto_6p_list))
866 vfd_proto_6p = 1;
867
868 dev_dbg(dev, "%s: vfd_proto_6p: %d\n",
869 __func__, vfd_proto_6p);
870 }
871
872 driver = kzalloc(sizeof(struct lirc_driver), GFP_KERNEL);
873 if (!driver)
874 goto free_context;
875
876 rbuf = kmalloc(sizeof(struct lirc_buffer), GFP_KERNEL);
877 if (!rbuf)
878 goto free_driver;
879
880 if (lirc_buffer_init(rbuf, BUF_CHUNK_SIZE, BUF_SIZE)) {
881 dev_err(dev, "%s: lirc_buffer_init failed\n", __func__);
882 goto free_rbuf;
883 }
884 rx_urb = usb_alloc_urb(0, GFP_KERNEL);
885 if (!rx_urb) {
886 dev_err(dev, "%s: usb_alloc_urb failed for IR urb\n", __func__);
887 goto free_lirc_buf;
888 }
889 tx_urb = usb_alloc_urb(0, GFP_KERNEL);
890 if (!tx_urb) {
891 dev_err(dev, "%s: usb_alloc_urb failed for display urb\n",
892 __func__);
893 goto free_rx_urb;
894 }
895
896 mutex_init(&context->ctx_lock);
897 context->vfd_proto_6p = vfd_proto_6p;
898
899 strcpy(driver->name, MOD_NAME);
900 driver->minor = -1;
901 driver->code_length = BUF_CHUNK_SIZE * 8;
902 driver->sample_rate = 0;
903 driver->features = LIRC_CAN_REC_MODE2;
904 driver->data = context;
905 driver->rbuf = rbuf;
906 driver->set_use_inc = ir_open;
907 driver->set_use_dec = ir_close;
908 driver->dev = &interface->dev;
909 driver->owner = THIS_MODULE;
910
911 mutex_lock(&context->ctx_lock);
912
913 context->driver = driver;
914 /* start out in keyboard mode */
915
916 lirc_minor = lirc_register_driver(driver);
917 if (lirc_minor < 0) {
918 dev_err(dev, "%s: lirc_register_driver failed\n", __func__);
919 goto free_tx_urb;
920 }
921
922 dev_info(dev, "Registered iMON driver (lirc minor: %d)\n",
923 lirc_minor);
924
925 /* Needed while unregistering! */
926 driver->minor = lirc_minor;
927
928 context->usbdev = usbdev;
929 context->dev_present = 1;
930 context->rx_endpoint = rx_endpoint;
931 context->rx_urb = rx_urb;
932
933 /*
934 * tx is used to send characters to lcd/vfd, associate RF
935 * remotes, set IR protocol, and maybe more...
936 */
937 context->tx_endpoint = tx_endpoint;
938 context->tx_urb = tx_urb;
939
940 if (display_ep_found)
941 context->display = 1;
942
943 usb_fill_int_urb(context->rx_urb, context->usbdev,
944 usb_rcvintpipe(context->usbdev,
945 context->rx_endpoint->bEndpointAddress),
946 context->usb_rx_buf, sizeof(context->usb_rx_buf),
947 usb_rx_callback, context,
948 context->rx_endpoint->bInterval);
949
950 retval = usb_submit_urb(context->rx_urb, GFP_KERNEL);
951 if (retval) {
952 dev_err(dev, "usb_submit_urb failed for intf0 (%d)\n", retval);
953 goto unregister_lirc;
954 }
955
956 usb_set_intfdata(interface, context);
957
958 if (context->display && ifnum == 0) {
959 dev_dbg(dev, "%s: Registering iMON display with sysfs\n",
960 __func__);
961
962 if (usb_register_dev(interface, &imon_class)) {
963 /* Not a fatal error, so ignore */
964 dev_info(dev, "%s: could not get a minor number for display\n",
965 __func__);
966 }
967 }
968
969 dev_info(dev, "iMON device (%04x:%04x, intf%d) on usb<%d:%d> initialized\n",
970 vendor, product, ifnum, usbdev->bus->busnum, usbdev->devnum);
971
972 /* Everything went fine. Just unlock and return retval (with is 0) */
973 goto driver_unlock;
974
975 unregister_lirc:
976 lirc_unregister_driver(driver->minor);
977
978 free_tx_urb:
979 usb_free_urb(tx_urb);
980
981 free_rx_urb:
982 usb_free_urb(rx_urb);
983
984 free_lirc_buf:
985 lirc_buffer_free(rbuf);
986
987 free_rbuf:
988 kfree(rbuf);
989
990 free_driver:
991 kfree(driver);
992 free_context:
993 kfree(context);
994 context = NULL;
995
996 driver_unlock:
997 mutex_unlock(&driver_lock);
998
999 return retval;
1000 }
1001
1002 /**
1003 * Callback function for USB core API: disconnect
1004 */
1005 static void imon_disconnect(struct usb_interface *interface)
1006 {
1007 struct imon_context *context;
1008 int ifnum;
1009
1010 /* prevent races with ir_open()/display_open() */
1011 mutex_lock(&driver_lock);
1012
1013 context = usb_get_intfdata(interface);
1014 ifnum = interface->cur_altsetting->desc.bInterfaceNumber;
1015
1016 mutex_lock(&context->ctx_lock);
1017
1018 usb_set_intfdata(interface, NULL);
1019
1020 /* Abort ongoing write */
1021 if (atomic_read(&context->tx.busy)) {
1022 usb_kill_urb(context->tx_urb);
1023 complete_all(&context->tx.finished);
1024 }
1025
1026 context->dev_present = 0;
1027 usb_kill_urb(context->rx_urb);
1028 if (context->display)
1029 usb_deregister_dev(interface, &imon_class);
1030
1031 if (!context->ir_isopen && !context->dev_present) {
1032 deregister_from_lirc(context);
1033 mutex_unlock(&context->ctx_lock);
1034 if (!context->display_isopen)
1035 free_imon_context(context);
1036 } else
1037 mutex_unlock(&context->ctx_lock);
1038
1039 mutex_unlock(&driver_lock);
1040
1041 dev_info(&interface->dev, "%s: iMON device (intf%d) disconnected\n",
1042 __func__, ifnum);
1043 }
1044
1045 static int imon_suspend(struct usb_interface *intf, pm_message_t message)
1046 {
1047 struct imon_context *context = usb_get_intfdata(intf);
1048
1049 usb_kill_urb(context->rx_urb);
1050
1051 return 0;
1052 }
1053
1054 static int imon_resume(struct usb_interface *intf)
1055 {
1056 struct imon_context *context = usb_get_intfdata(intf);
1057
1058 usb_fill_int_urb(context->rx_urb, context->usbdev,
1059 usb_rcvintpipe(context->usbdev,
1060 context->rx_endpoint->bEndpointAddress),
1061 context->usb_rx_buf, sizeof(context->usb_rx_buf),
1062 usb_rx_callback, context,
1063 context->rx_endpoint->bInterval);
1064
1065 return usb_submit_urb(context->rx_urb, GFP_ATOMIC);
1066 }
1067
1068 module_usb_driver(imon_driver);
1069
1070
1071
1072
1073
1074 /* LDV_COMMENT_BEGIN_MAIN */
1075 #ifdef LDV_MAIN0_sequence_infinite_withcheck_stateful
1076
1077 /*###########################################################################*/
1078
1079 /*############## Driver Environment Generator 0.2 output ####################*/
1080
1081 /*###########################################################################*/
1082
1083
1084
1085 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test if all kernel resources are correctly released by driver before driver will be unloaded. */
1086 void ldv_check_final_state(void);
1087
1088 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result. */
1089 void ldv_check_return_value(int res);
1090
1091 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result of probe() function. */
1092 void ldv_check_return_value_probe(int res);
1093
1094 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Initializes the model. */
1095 void ldv_initialize(void);
1096
1097 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Reinitializes the model between distinct model function calls. */
1098 void ldv_handler_precall(void);
1099
1100 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Returns arbitrary interger value. */
1101 int nondet_int(void);
1102
1103 /* LDV_COMMENT_VAR_DECLARE_LDV Special variable for LDV verifier. */
1104 int LDV_IN_INTERRUPT;
1105
1106 /* LDV_COMMENT_FUNCTION_MAIN Main function for LDV verifier. */
1107 void ldv_main0_sequence_infinite_withcheck_stateful(void) {
1108
1109
1110
1111 /* LDV_COMMENT_BEGIN_VARIABLE_DECLARATION_PART */
1112 /*============================= VARIABLE DECLARATION PART =============================*/
1113 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1114 /* content: static int imon_probe(struct usb_interface *interface, const struct usb_device_id *id)*/
1115 /* LDV_COMMENT_BEGIN_PREP */
1116 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1117 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1118 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1119 #define MOD_NAME "lirc_imon"
1120 #define MOD_VERSION "0.8"
1121 #define DISPLAY_MINOR_BASE 144
1122 #define DEVICE_NAME "lcd%d"
1123 #define BUF_CHUNK_SIZE 4
1124 #define BUF_SIZE 128
1125 #define BIT_DURATION 250
1126 #define IMON_DATA_BUF_SZ 35
1127 /* LDV_COMMENT_END_PREP */
1128 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "imon_probe" */
1129 struct usb_interface * var_group1;
1130 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "imon_probe" */
1131 const struct usb_device_id * var_imon_probe_12_p1;
1132 /* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "imon_probe" */
1133 static int res_imon_probe_12;
1134 /* content: static void imon_disconnect(struct usb_interface *interface)*/
1135 /* LDV_COMMENT_BEGIN_PREP */
1136 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1137 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1138 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1139 #define MOD_NAME "lirc_imon"
1140 #define MOD_VERSION "0.8"
1141 #define DISPLAY_MINOR_BASE 144
1142 #define DEVICE_NAME "lcd%d"
1143 #define BUF_CHUNK_SIZE 4
1144 #define BUF_SIZE 128
1145 #define BIT_DURATION 250
1146 #define IMON_DATA_BUF_SZ 35
1147 /* LDV_COMMENT_END_PREP */
1148 /* content: static int imon_suspend(struct usb_interface *intf, pm_message_t message)*/
1149 /* LDV_COMMENT_BEGIN_PREP */
1150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1151 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1152 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1153 #define MOD_NAME "lirc_imon"
1154 #define MOD_VERSION "0.8"
1155 #define DISPLAY_MINOR_BASE 144
1156 #define DEVICE_NAME "lcd%d"
1157 #define BUF_CHUNK_SIZE 4
1158 #define BUF_SIZE 128
1159 #define BIT_DURATION 250
1160 #define IMON_DATA_BUF_SZ 35
1161 /* LDV_COMMENT_END_PREP */
1162 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "imon_suspend" */
1163 pm_message_t var_imon_suspend_14_p1;
1164 /* content: static int imon_resume(struct usb_interface *intf)*/
1165 /* LDV_COMMENT_BEGIN_PREP */
1166 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1167 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1168 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1169 #define MOD_NAME "lirc_imon"
1170 #define MOD_VERSION "0.8"
1171 #define DISPLAY_MINOR_BASE 144
1172 #define DEVICE_NAME "lcd%d"
1173 #define BUF_CHUNK_SIZE 4
1174 #define BUF_SIZE 128
1175 #define BIT_DURATION 250
1176 #define IMON_DATA_BUF_SZ 35
1177 /* LDV_COMMENT_END_PREP */
1178
1179
1180
1181
1182 /* LDV_COMMENT_END_VARIABLE_DECLARATION_PART */
1183 /* LDV_COMMENT_BEGIN_VARIABLE_INITIALIZING_PART */
1184 /*============================= VARIABLE INITIALIZING PART =============================*/
1185 LDV_IN_INTERRUPT=1;
1186
1187
1188
1189
1190 /* LDV_COMMENT_END_VARIABLE_INITIALIZING_PART */
1191 /* LDV_COMMENT_BEGIN_FUNCTION_CALL_SECTION */
1192 /*============================= FUNCTION CALL SECTION =============================*/
1193 /* LDV_COMMENT_FUNCTION_CALL Initialize LDV model. */
1194 ldv_initialize();
1195 int ldv_s_imon_driver_usb_driver = 0;
1196
1197
1198 while( nondet_int()
1199 || !(ldv_s_imon_driver_usb_driver == 0)
1200 ) {
1201
1202 switch(nondet_int()) {
1203
1204 case 0: {
1205
1206 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1207 if(ldv_s_imon_driver_usb_driver==0) {
1208
1209 /* content: static int imon_probe(struct usb_interface *interface, const struct usb_device_id *id)*/
1210 /* LDV_COMMENT_BEGIN_PREP */
1211 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1212 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1213 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1214 #define MOD_NAME "lirc_imon"
1215 #define MOD_VERSION "0.8"
1216 #define DISPLAY_MINOR_BASE 144
1217 #define DEVICE_NAME "lcd%d"
1218 #define BUF_CHUNK_SIZE 4
1219 #define BUF_SIZE 128
1220 #define BIT_DURATION 250
1221 #define IMON_DATA_BUF_SZ 35
1222 /* LDV_COMMENT_END_PREP */
1223 /* LDV_COMMENT_FUNCTION_CALL Function from field "probe" from driver structure with callbacks "imon_driver". Standart function test for correct return result. */
1224 res_imon_probe_12 = imon_probe( var_group1, var_imon_probe_12_p1);
1225 ldv_check_return_value(res_imon_probe_12);
1226 ldv_check_return_value_probe(res_imon_probe_12);
1227 if(res_imon_probe_12)
1228 goto ldv_module_exit;
1229 ldv_s_imon_driver_usb_driver++;
1230
1231 }
1232
1233 }
1234
1235 break;
1236 case 1: {
1237
1238 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1239 if(ldv_s_imon_driver_usb_driver==1) {
1240
1241 /* content: static int imon_suspend(struct usb_interface *intf, pm_message_t message)*/
1242 /* LDV_COMMENT_BEGIN_PREP */
1243 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1244 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1245 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1246 #define MOD_NAME "lirc_imon"
1247 #define MOD_VERSION "0.8"
1248 #define DISPLAY_MINOR_BASE 144
1249 #define DEVICE_NAME "lcd%d"
1250 #define BUF_CHUNK_SIZE 4
1251 #define BUF_SIZE 128
1252 #define BIT_DURATION 250
1253 #define IMON_DATA_BUF_SZ 35
1254 /* LDV_COMMENT_END_PREP */
1255 /* LDV_COMMENT_FUNCTION_CALL Function from field "suspend" from driver structure with callbacks "imon_driver" */
1256 ldv_handler_precall();
1257 imon_suspend( var_group1, var_imon_suspend_14_p1);
1258 ldv_s_imon_driver_usb_driver++;
1259
1260 }
1261
1262 }
1263
1264 break;
1265 case 2: {
1266
1267 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1268 if(ldv_s_imon_driver_usb_driver==2) {
1269
1270 /* content: static int imon_resume(struct usb_interface *intf)*/
1271 /* LDV_COMMENT_BEGIN_PREP */
1272 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1273 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1274 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1275 #define MOD_NAME "lirc_imon"
1276 #define MOD_VERSION "0.8"
1277 #define DISPLAY_MINOR_BASE 144
1278 #define DEVICE_NAME "lcd%d"
1279 #define BUF_CHUNK_SIZE 4
1280 #define BUF_SIZE 128
1281 #define BIT_DURATION 250
1282 #define IMON_DATA_BUF_SZ 35
1283 /* LDV_COMMENT_END_PREP */
1284 /* LDV_COMMENT_FUNCTION_CALL Function from field "resume" from driver structure with callbacks "imon_driver" */
1285 ldv_handler_precall();
1286 imon_resume( var_group1);
1287 ldv_s_imon_driver_usb_driver++;
1288
1289 }
1290
1291 }
1292
1293 break;
1294 case 3: {
1295
1296 /** STRUCT: struct type: usb_driver, struct name: imon_driver **/
1297 if(ldv_s_imon_driver_usb_driver==3) {
1298
1299 /* content: static void imon_disconnect(struct usb_interface *interface)*/
1300 /* LDV_COMMENT_BEGIN_PREP */
1301 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
1302 #define MOD_AUTHOR "Venky Raju <dev@venky.ws>"
1303 #define MOD_DESC "Driver for SoundGraph iMON MultiMedia IR/Display"
1304 #define MOD_NAME "lirc_imon"
1305 #define MOD_VERSION "0.8"
1306 #define DISPLAY_MINOR_BASE 144
1307 #define DEVICE_NAME "lcd%d"
1308 #define BUF_CHUNK_SIZE 4
1309 #define BUF_SIZE 128
1310 #define BIT_DURATION 250
1311 #define IMON_DATA_BUF_SZ 35
1312 /* LDV_COMMENT_END_PREP */
1313 /* LDV_COMMENT_FUNCTION_CALL Function from field "disconnect" from driver structure with callbacks "imon_driver" */
1314 ldv_handler_precall();
1315 imon_disconnect( var_group1);
1316 ldv_s_imon_driver_usb_driver=0;
1317
1318 }
1319
1320 }
1321
1322 break;
1323 default: break;
1324
1325 }
1326
1327 }
1328
1329 ldv_module_exit:
1330
1331 /* LDV_COMMENT_FUNCTION_CALL Checks that all resources and locks are correctly released before the driver will be unloaded. */
1332 ldv_final: ldv_check_final_state();
1333
1334 /* LDV_COMMENT_END_FUNCTION_CALL_SECTION */
1335 return;
1336
1337 }
1338 #endif
1339
1340 /* LDV_COMMENT_END_MAIN */
1341
1342 #line 84 "/work/ldvuser/ref_launch/work/current--X--drivers--X--defaultlinux-4.3-rc1.tar.xz--X--32_7a--X--cpachecker/linux-4.3-rc1.tar.xz/csd_deg_dscv/7460/dscv_tempdir/dscv/ri/32_7a/drivers/staging/media/lirc/lirc_imon.o.c.prepared" 1
2
3 #include <linux/mutex.h>
4 #include <linux/errno.h>
5 #include <verifier/rcv.h>
6 #include <kernel-model/ERR.inc>
7
8 static int ldv_mutex_ctx_lock_of_imon_context = 1;
9
10 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_interruptible_ctx_lock_of_imon_context') Check that mutex 'ctx_lock_of_imon_context' was unlocked and nondeterministically lock it. Return the corresponding error code on fails */
11 int ldv_mutex_lock_interruptible_ctx_lock_of_imon_context(struct mutex *lock)
12 {
13 int nondetermined;
14
15 /* LDV_COMMENT_ASSERT Mutex 'ctx_lock_of_imon_context' must be unlocked */
16 ldv_assert(ldv_mutex_ctx_lock_of_imon_context == 1);
17
18 /* LDV_COMMENT_OTHER Construct nondetermined result*/
19 nondetermined = ldv_undef_int();
20
21 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'ctx_lock_of_imon_context' */
22 if (nondetermined)
23 {
24 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'ctx_lock_of_imon_context' */
25 ldv_mutex_ctx_lock_of_imon_context = 2;
26 /* LDV_COMMENT_RETURN Finish with success */
27 return 0;
28 }
29 else
30 {
31 /* LDV_COMMENT_RETURN Finish with fail. Mutex 'ctx_lock_of_imon_context' is keeped unlocked */
32 return -EINTR;
33 }
34 }
35
36 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_killable_ctx_lock_of_imon_context') Check that mutex 'ctx_lock_of_imon_context' wasn unlocked and nondeterministically lock it. Return the corresponding error code on fails*/
37 int ldv_mutex_lock_killable_ctx_lock_of_imon_context(struct mutex *lock)
38 {
39 int nondetermined;
40
41 /* LDV_COMMENT_ASSERT Mutex 'ctx_lock_of_imon_context' must be unlocked */
42 ldv_assert(ldv_mutex_ctx_lock_of_imon_context == 1);
43
44 /* LDV_COMMENT_OTHER Construct nondetermined result */
45 nondetermined = ldv_undef_int();
46
47 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'ctx_lock_of_imon_context' */
48 if (nondetermined)
49 {
50 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'ctx_lock_of_imon_context' */
51 ldv_mutex_ctx_lock_of_imon_context = 2;
52 /* LDV_COMMENT_RETURN Finish with success*/
53 return 0;
54 }
55 else
56 {
57 /* LDV_COMMENT_RETURN Finish with the fail. Mutex 'ctx_lock_of_imon_context' is keeped unlocked */
58 return -EINTR;
59 }
60 }
61
62 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_ctx_lock_of_imon_context') Check that mutex 'ctx_lock_of_imon_context' was not locked and lock it */
63 void ldv_mutex_lock_ctx_lock_of_imon_context(struct mutex *lock)
64 {
65 /* LDV_COMMENT_ASSERT Mutex 'ctx_lock_of_imon_context' must be unlocked */
66 ldv_assert(ldv_mutex_ctx_lock_of_imon_context == 1);
67 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'ctx_lock_of_imon_context' */
68 ldv_mutex_ctx_lock_of_imon_context = 2;
69 }
70
71 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_trylock_ctx_lock_of_imon_context') Check that mutex 'ctx_lock_of_imon_context' was not locked and nondeterministically lock it. Return 0 on fails */
72 int ldv_mutex_trylock_ctx_lock_of_imon_context(struct mutex *lock)
73 {
74 int is_mutex_held_by_another_thread;
75
76 /* LDV_COMMENT_ASSERT It may be an error if mutex 'ctx_lock_of_imon_context' is locked at this point */
77 ldv_assert(ldv_mutex_ctx_lock_of_imon_context == 1);
78
79 /* LDV_COMMENT_OTHER Construct nondetermined result */
80 is_mutex_held_by_another_thread = ldv_undef_int();
81
82 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'ctx_lock_of_imon_context' */
83 if (is_mutex_held_by_another_thread)
84 {
85 /* LDV_COMMENT_RETURN Finish with fail */
86 return 0;
87 }
88 else
89 {
90 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'ctx_lock_of_imon_context' */
91 ldv_mutex_ctx_lock_of_imon_context = 2;
92 /* LDV_COMMENT_RETURN Finish with success */
93 return 1;
94 }
95 }
96
97 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_atomic_dec_and_mutex_lock_ctx_lock_of_imon_context') Lock mutex 'ctx_lock_of_imon_context' if atomic decrement result is zero */
98 int ldv_atomic_dec_and_mutex_lock_ctx_lock_of_imon_context(atomic_t *cnt, struct mutex *lock)
99 {
100 int atomic_value_after_dec;
101
102 /* LDV_COMMENT_ASSERT Mutex 'ctx_lock_of_imon_context' must be unlocked (since we may lock it in this function) */
103 ldv_assert(ldv_mutex_ctx_lock_of_imon_context == 1);
104
105 /* LDV_COMMENT_OTHER Assign the result of atomic decrement */
106 atomic_value_after_dec = ldv_undef_int();
107
108 /* LDV_COMMENT_ASSERT Check if atomic decrement returns zero */
109 if (atomic_value_after_dec == 0)
110 {
111 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'ctx_lock_of_imon_context', as atomic has decremented to zero */
112 ldv_mutex_ctx_lock_of_imon_context = 2;
113 /* LDV_COMMENT_RETURN Return 1 with locked mutex 'ctx_lock_of_imon_context' */
114 return 1;
115 }
116
117 /* LDV_COMMENT_RETURN Atomic decrement is still not zero, return 0 without locking mutex 'ctx_lock_of_imon_context' */
118 return 0;
119 }
120
121 /* TODO Syncronize with 39_7a ldv_spin_is_locked! */
122 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_is_locked_ctx_lock_of_imon_context') Check whether mutex 'ctx_lock_of_imon_context' was locked */
123 int ldv_mutex_is_locked_ctx_lock_of_imon_context(struct mutex *lock)
124 {
125 int nondetermined;
126
127 if(ldv_mutex_ctx_lock_of_imon_context == 1)
128 {
129 /* LDV_COMMENT_OTHER Construct nondetermined result */
130 nondetermined = ldv_undef_int();
131
132 /* LDV_COMMENT_ASSERT Nondeterministically understand whether mutex 'ctx_lock_of_imon_context' was locked */
133 if(nondetermined)
134 {
135 /* LDV_COMMENT_RETURN Mutex 'ctx_lock_of_imon_context' was unlocked */
136 return 0;
137 }
138 else
139 {
140 /* LDV_COMMENT_RETURN Mutex 'ctx_lock_of_imon_context' was locked */
141 return 1;
142 }
143 }
144 else
145 {
146 /* LDV_COMMENT_RETURN Mutex 'ctx_lock_of_imon_context' was locked */
147 return 1;
148 }
149 }
150
151 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_unlock_ctx_lock_of_imon_context') Check that mutex 'ctx_lock_of_imon_context' was locked and unlock it */
152 void ldv_mutex_unlock_ctx_lock_of_imon_context(struct mutex *lock)
153 {
154 /* LDV_COMMENT_ASSERT Mutex 'ctx_lock_of_imon_context' must be locked */
155 ldv_assert(ldv_mutex_ctx_lock_of_imon_context == 2);
156 /* LDV_COMMENT_CHANGE_STATE Unlock mutex 'ctx_lock_of_imon_context' */
157 ldv_mutex_ctx_lock_of_imon_context = 1;
158 }
159
160
161
162 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device') Acquires the usb lock and checks for double usb lock*/
163 void ldv_usb_lock_device_ctx_lock_of_imon_context(void)
164 {
165 /* LDV_COMMENT_CHANGE_STATE Lock usb_lock 'ctx_lock_of_imon_context' */
166 ldv_mutex_lock_ctx_lock_of_imon_context(NULL);
167 }
168
169 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_trylock_device') Tries to acquire the usb lock and returns 1 if successful*/
170 int ldv_usb_trylock_device_ctx_lock_of_imon_context(void)
171 {
172 return ldv_mutex_trylock_ctx_lock_of_imon_context(NULL);
173 }
174
175 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device_for_reset') Tries to acquire the usb lock and returns 0 if successful*/
176 int ldv_usb_lock_device_for_reset_ctx_lock_of_imon_context(void)
177 {
178 if(ldv_undef_int()) {
179 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'ctx_lock_of_imon_context' */
180 ldv_mutex_lock_ctx_lock_of_imon_context(NULL);
181 /* LDV_COMMENT_RETURN Finish with success */
182 return 0;
183 } else
184 /* LDV_COMMENT_RETURN Usb lock is not acquired*/
185 return ldv_undef_int_negative();
186 }
187
188 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_unlock_device') Releases the usb lock and checks that usb lock was acquired before*/
189 void ldv_usb_unlock_device_ctx_lock_of_imon_context(void) {
190 /* LDV_COMMENT_CHANGE_STATE Unlock usb_lock 'ctx_lock_of_imon_context' */
191 ldv_mutex_unlock_ctx_lock_of_imon_context(NULL);
192 }
193
194 static int ldv_mutex_driver_lock = 1;
195
196 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_interruptible_driver_lock') Check that mutex 'driver_lock' was unlocked and nondeterministically lock it. Return the corresponding error code on fails */
197 int ldv_mutex_lock_interruptible_driver_lock(struct mutex *lock)
198 {
199 int nondetermined;
200
201 /* LDV_COMMENT_ASSERT Mutex 'driver_lock' must be unlocked */
202 ldv_assert(ldv_mutex_driver_lock == 1);
203
204 /* LDV_COMMENT_OTHER Construct nondetermined result*/
205 nondetermined = ldv_undef_int();
206
207 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'driver_lock' */
208 if (nondetermined)
209 {
210 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'driver_lock' */
211 ldv_mutex_driver_lock = 2;
212 /* LDV_COMMENT_RETURN Finish with success */
213 return 0;
214 }
215 else
216 {
217 /* LDV_COMMENT_RETURN Finish with fail. Mutex 'driver_lock' is keeped unlocked */
218 return -EINTR;
219 }
220 }
221
222 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_killable_driver_lock') Check that mutex 'driver_lock' wasn unlocked and nondeterministically lock it. Return the corresponding error code on fails*/
223 int ldv_mutex_lock_killable_driver_lock(struct mutex *lock)
224 {
225 int nondetermined;
226
227 /* LDV_COMMENT_ASSERT Mutex 'driver_lock' must be unlocked */
228 ldv_assert(ldv_mutex_driver_lock == 1);
229
230 /* LDV_COMMENT_OTHER Construct nondetermined result */
231 nondetermined = ldv_undef_int();
232
233 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'driver_lock' */
234 if (nondetermined)
235 {
236 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'driver_lock' */
237 ldv_mutex_driver_lock = 2;
238 /* LDV_COMMENT_RETURN Finish with success*/
239 return 0;
240 }
241 else
242 {
243 /* LDV_COMMENT_RETURN Finish with the fail. Mutex 'driver_lock' is keeped unlocked */
244 return -EINTR;
245 }
246 }
247
248 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_driver_lock') Check that mutex 'driver_lock' was not locked and lock it */
249 void ldv_mutex_lock_driver_lock(struct mutex *lock)
250 {
251 /* LDV_COMMENT_ASSERT Mutex 'driver_lock' must be unlocked */
252 ldv_assert(ldv_mutex_driver_lock == 1);
253 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'driver_lock' */
254 ldv_mutex_driver_lock = 2;
255 }
256
257 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_trylock_driver_lock') Check that mutex 'driver_lock' was not locked and nondeterministically lock it. Return 0 on fails */
258 int ldv_mutex_trylock_driver_lock(struct mutex *lock)
259 {
260 int is_mutex_held_by_another_thread;
261
262 /* LDV_COMMENT_ASSERT It may be an error if mutex 'driver_lock' is locked at this point */
263 ldv_assert(ldv_mutex_driver_lock == 1);
264
265 /* LDV_COMMENT_OTHER Construct nondetermined result */
266 is_mutex_held_by_another_thread = ldv_undef_int();
267
268 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'driver_lock' */
269 if (is_mutex_held_by_another_thread)
270 {
271 /* LDV_COMMENT_RETURN Finish with fail */
272 return 0;
273 }
274 else
275 {
276 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'driver_lock' */
277 ldv_mutex_driver_lock = 2;
278 /* LDV_COMMENT_RETURN Finish with success */
279 return 1;
280 }
281 }
282
283 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_atomic_dec_and_mutex_lock_driver_lock') Lock mutex 'driver_lock' if atomic decrement result is zero */
284 int ldv_atomic_dec_and_mutex_lock_driver_lock(atomic_t *cnt, struct mutex *lock)
285 {
286 int atomic_value_after_dec;
287
288 /* LDV_COMMENT_ASSERT Mutex 'driver_lock' must be unlocked (since we may lock it in this function) */
289 ldv_assert(ldv_mutex_driver_lock == 1);
290
291 /* LDV_COMMENT_OTHER Assign the result of atomic decrement */
292 atomic_value_after_dec = ldv_undef_int();
293
294 /* LDV_COMMENT_ASSERT Check if atomic decrement returns zero */
295 if (atomic_value_after_dec == 0)
296 {
297 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'driver_lock', as atomic has decremented to zero */
298 ldv_mutex_driver_lock = 2;
299 /* LDV_COMMENT_RETURN Return 1 with locked mutex 'driver_lock' */
300 return 1;
301 }
302
303 /* LDV_COMMENT_RETURN Atomic decrement is still not zero, return 0 without locking mutex 'driver_lock' */
304 return 0;
305 }
306
307 /* TODO Syncronize with 39_7a ldv_spin_is_locked! */
308 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_is_locked_driver_lock') Check whether mutex 'driver_lock' was locked */
309 int ldv_mutex_is_locked_driver_lock(struct mutex *lock)
310 {
311 int nondetermined;
312
313 if(ldv_mutex_driver_lock == 1)
314 {
315 /* LDV_COMMENT_OTHER Construct nondetermined result */
316 nondetermined = ldv_undef_int();
317
318 /* LDV_COMMENT_ASSERT Nondeterministically understand whether mutex 'driver_lock' was locked */
319 if(nondetermined)
320 {
321 /* LDV_COMMENT_RETURN Mutex 'driver_lock' was unlocked */
322 return 0;
323 }
324 else
325 {
326 /* LDV_COMMENT_RETURN Mutex 'driver_lock' was locked */
327 return 1;
328 }
329 }
330 else
331 {
332 /* LDV_COMMENT_RETURN Mutex 'driver_lock' was locked */
333 return 1;
334 }
335 }
336
337 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_unlock_driver_lock') Check that mutex 'driver_lock' was locked and unlock it */
338 void ldv_mutex_unlock_driver_lock(struct mutex *lock)
339 {
340 /* LDV_COMMENT_ASSERT Mutex 'driver_lock' must be locked */
341 ldv_assert(ldv_mutex_driver_lock == 2);
342 /* LDV_COMMENT_CHANGE_STATE Unlock mutex 'driver_lock' */
343 ldv_mutex_driver_lock = 1;
344 }
345
346
347
348 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device') Acquires the usb lock and checks for double usb lock*/
349 void ldv_usb_lock_device_driver_lock(void)
350 {
351 /* LDV_COMMENT_CHANGE_STATE Lock usb_lock 'driver_lock' */
352 ldv_mutex_lock_driver_lock(NULL);
353 }
354
355 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_trylock_device') Tries to acquire the usb lock and returns 1 if successful*/
356 int ldv_usb_trylock_device_driver_lock(void)
357 {
358 return ldv_mutex_trylock_driver_lock(NULL);
359 }
360
361 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device_for_reset') Tries to acquire the usb lock and returns 0 if successful*/
362 int ldv_usb_lock_device_for_reset_driver_lock(void)
363 {
364 if(ldv_undef_int()) {
365 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'driver_lock' */
366 ldv_mutex_lock_driver_lock(NULL);
367 /* LDV_COMMENT_RETURN Finish with success */
368 return 0;
369 } else
370 /* LDV_COMMENT_RETURN Usb lock is not acquired*/
371 return ldv_undef_int_negative();
372 }
373
374 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_unlock_device') Releases the usb lock and checks that usb lock was acquired before*/
375 void ldv_usb_unlock_device_driver_lock(void) {
376 /* LDV_COMMENT_CHANGE_STATE Unlock usb_lock 'driver_lock' */
377 ldv_mutex_unlock_driver_lock(NULL);
378 }
379
380 static int ldv_mutex_i_mutex_of_inode = 1;
381
382 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_interruptible_i_mutex_of_inode') Check that mutex 'i_mutex_of_inode' was unlocked and nondeterministically lock it. Return the corresponding error code on fails */
383 int ldv_mutex_lock_interruptible_i_mutex_of_inode(struct mutex *lock)
384 {
385 int nondetermined;
386
387 /* LDV_COMMENT_ASSERT Mutex 'i_mutex_of_inode' must be unlocked */
388 ldv_assert(ldv_mutex_i_mutex_of_inode == 1);
389
390 /* LDV_COMMENT_OTHER Construct nondetermined result*/
391 nondetermined = ldv_undef_int();
392
393 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'i_mutex_of_inode' */
394 if (nondetermined)
395 {
396 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'i_mutex_of_inode' */
397 ldv_mutex_i_mutex_of_inode = 2;
398 /* LDV_COMMENT_RETURN Finish with success */
399 return 0;
400 }
401 else
402 {
403 /* LDV_COMMENT_RETURN Finish with fail. Mutex 'i_mutex_of_inode' is keeped unlocked */
404 return -EINTR;
405 }
406 }
407
408 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_killable_i_mutex_of_inode') Check that mutex 'i_mutex_of_inode' wasn unlocked and nondeterministically lock it. Return the corresponding error code on fails*/
409 int ldv_mutex_lock_killable_i_mutex_of_inode(struct mutex *lock)
410 {
411 int nondetermined;
412
413 /* LDV_COMMENT_ASSERT Mutex 'i_mutex_of_inode' must be unlocked */
414 ldv_assert(ldv_mutex_i_mutex_of_inode == 1);
415
416 /* LDV_COMMENT_OTHER Construct nondetermined result */
417 nondetermined = ldv_undef_int();
418
419 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'i_mutex_of_inode' */
420 if (nondetermined)
421 {
422 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'i_mutex_of_inode' */
423 ldv_mutex_i_mutex_of_inode = 2;
424 /* LDV_COMMENT_RETURN Finish with success*/
425 return 0;
426 }
427 else
428 {
429 /* LDV_COMMENT_RETURN Finish with the fail. Mutex 'i_mutex_of_inode' is keeped unlocked */
430 return -EINTR;
431 }
432 }
433
434 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_i_mutex_of_inode') Check that mutex 'i_mutex_of_inode' was not locked and lock it */
435 void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock)
436 {
437 /* LDV_COMMENT_ASSERT Mutex 'i_mutex_of_inode' must be unlocked */
438 ldv_assert(ldv_mutex_i_mutex_of_inode == 1);
439 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'i_mutex_of_inode' */
440 ldv_mutex_i_mutex_of_inode = 2;
441 }
442
443 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_trylock_i_mutex_of_inode') Check that mutex 'i_mutex_of_inode' was not locked and nondeterministically lock it. Return 0 on fails */
444 int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock)
445 {
446 int is_mutex_held_by_another_thread;
447
448 /* LDV_COMMENT_ASSERT It may be an error if mutex 'i_mutex_of_inode' is locked at this point */
449 ldv_assert(ldv_mutex_i_mutex_of_inode == 1);
450
451 /* LDV_COMMENT_OTHER Construct nondetermined result */
452 is_mutex_held_by_another_thread = ldv_undef_int();
453
454 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'i_mutex_of_inode' */
455 if (is_mutex_held_by_another_thread)
456 {
457 /* LDV_COMMENT_RETURN Finish with fail */
458 return 0;
459 }
460 else
461 {
462 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'i_mutex_of_inode' */
463 ldv_mutex_i_mutex_of_inode = 2;
464 /* LDV_COMMENT_RETURN Finish with success */
465 return 1;
466 }
467 }
468
469 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode') Lock mutex 'i_mutex_of_inode' if atomic decrement result is zero */
470 int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt, struct mutex *lock)
471 {
472 int atomic_value_after_dec;
473
474 /* LDV_COMMENT_ASSERT Mutex 'i_mutex_of_inode' must be unlocked (since we may lock it in this function) */
475 ldv_assert(ldv_mutex_i_mutex_of_inode == 1);
476
477 /* LDV_COMMENT_OTHER Assign the result of atomic decrement */
478 atomic_value_after_dec = ldv_undef_int();
479
480 /* LDV_COMMENT_ASSERT Check if atomic decrement returns zero */
481 if (atomic_value_after_dec == 0)
482 {
483 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'i_mutex_of_inode', as atomic has decremented to zero */
484 ldv_mutex_i_mutex_of_inode = 2;
485 /* LDV_COMMENT_RETURN Return 1 with locked mutex 'i_mutex_of_inode' */
486 return 1;
487 }
488
489 /* LDV_COMMENT_RETURN Atomic decrement is still not zero, return 0 without locking mutex 'i_mutex_of_inode' */
490 return 0;
491 }
492
493 /* TODO Syncronize with 39_7a ldv_spin_is_locked! */
494 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_is_locked_i_mutex_of_inode') Check whether mutex 'i_mutex_of_inode' was locked */
495 int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock)
496 {
497 int nondetermined;
498
499 if(ldv_mutex_i_mutex_of_inode == 1)
500 {
501 /* LDV_COMMENT_OTHER Construct nondetermined result */
502 nondetermined = ldv_undef_int();
503
504 /* LDV_COMMENT_ASSERT Nondeterministically understand whether mutex 'i_mutex_of_inode' was locked */
505 if(nondetermined)
506 {
507 /* LDV_COMMENT_RETURN Mutex 'i_mutex_of_inode' was unlocked */
508 return 0;
509 }
510 else
511 {
512 /* LDV_COMMENT_RETURN Mutex 'i_mutex_of_inode' was locked */
513 return 1;
514 }
515 }
516 else
517 {
518 /* LDV_COMMENT_RETURN Mutex 'i_mutex_of_inode' was locked */
519 return 1;
520 }
521 }
522
523 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_unlock_i_mutex_of_inode') Check that mutex 'i_mutex_of_inode' was locked and unlock it */
524 void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock)
525 {
526 /* LDV_COMMENT_ASSERT Mutex 'i_mutex_of_inode' must be locked */
527 ldv_assert(ldv_mutex_i_mutex_of_inode == 2);
528 /* LDV_COMMENT_CHANGE_STATE Unlock mutex 'i_mutex_of_inode' */
529 ldv_mutex_i_mutex_of_inode = 1;
530 }
531
532
533
534 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device') Acquires the usb lock and checks for double usb lock*/
535 void ldv_usb_lock_device_i_mutex_of_inode(void)
536 {
537 /* LDV_COMMENT_CHANGE_STATE Lock usb_lock 'i_mutex_of_inode' */
538 ldv_mutex_lock_i_mutex_of_inode(NULL);
539 }
540
541 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_trylock_device') Tries to acquire the usb lock and returns 1 if successful*/
542 int ldv_usb_trylock_device_i_mutex_of_inode(void)
543 {
544 return ldv_mutex_trylock_i_mutex_of_inode(NULL);
545 }
546
547 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device_for_reset') Tries to acquire the usb lock and returns 0 if successful*/
548 int ldv_usb_lock_device_for_reset_i_mutex_of_inode(void)
549 {
550 if(ldv_undef_int()) {
551 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'i_mutex_of_inode' */
552 ldv_mutex_lock_i_mutex_of_inode(NULL);
553 /* LDV_COMMENT_RETURN Finish with success */
554 return 0;
555 } else
556 /* LDV_COMMENT_RETURN Usb lock is not acquired*/
557 return ldv_undef_int_negative();
558 }
559
560 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_unlock_device') Releases the usb lock and checks that usb lock was acquired before*/
561 void ldv_usb_unlock_device_i_mutex_of_inode(void) {
562 /* LDV_COMMENT_CHANGE_STATE Unlock usb_lock 'i_mutex_of_inode' */
563 ldv_mutex_unlock_i_mutex_of_inode(NULL);
564 }
565
566 static int ldv_mutex_lock = 1;
567
568 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_interruptible_lock') Check that mutex 'lock' was unlocked and nondeterministically lock it. Return the corresponding error code on fails */
569 int ldv_mutex_lock_interruptible_lock(struct mutex *lock)
570 {
571 int nondetermined;
572
573 /* LDV_COMMENT_ASSERT Mutex 'lock' must be unlocked */
574 ldv_assert(ldv_mutex_lock == 1);
575
576 /* LDV_COMMENT_OTHER Construct nondetermined result*/
577 nondetermined = ldv_undef_int();
578
579 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'lock' */
580 if (nondetermined)
581 {
582 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'lock' */
583 ldv_mutex_lock = 2;
584 /* LDV_COMMENT_RETURN Finish with success */
585 return 0;
586 }
587 else
588 {
589 /* LDV_COMMENT_RETURN Finish with fail. Mutex 'lock' is keeped unlocked */
590 return -EINTR;
591 }
592 }
593
594 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_killable_lock') Check that mutex 'lock' wasn unlocked and nondeterministically lock it. Return the corresponding error code on fails*/
595 int ldv_mutex_lock_killable_lock(struct mutex *lock)
596 {
597 int nondetermined;
598
599 /* LDV_COMMENT_ASSERT Mutex 'lock' must be unlocked */
600 ldv_assert(ldv_mutex_lock == 1);
601
602 /* LDV_COMMENT_OTHER Construct nondetermined result */
603 nondetermined = ldv_undef_int();
604
605 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'lock' */
606 if (nondetermined)
607 {
608 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'lock' */
609 ldv_mutex_lock = 2;
610 /* LDV_COMMENT_RETURN Finish with success*/
611 return 0;
612 }
613 else
614 {
615 /* LDV_COMMENT_RETURN Finish with the fail. Mutex 'lock' is keeped unlocked */
616 return -EINTR;
617 }
618 }
619
620 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_lock') Check that mutex 'lock' was not locked and lock it */
621 void ldv_mutex_lock_lock(struct mutex *lock)
622 {
623 /* LDV_COMMENT_ASSERT Mutex 'lock' must be unlocked */
624 ldv_assert(ldv_mutex_lock == 1);
625 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'lock' */
626 ldv_mutex_lock = 2;
627 }
628
629 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_trylock_lock') Check that mutex 'lock' was not locked and nondeterministically lock it. Return 0 on fails */
630 int ldv_mutex_trylock_lock(struct mutex *lock)
631 {
632 int is_mutex_held_by_another_thread;
633
634 /* LDV_COMMENT_ASSERT It may be an error if mutex 'lock' is locked at this point */
635 ldv_assert(ldv_mutex_lock == 1);
636
637 /* LDV_COMMENT_OTHER Construct nondetermined result */
638 is_mutex_held_by_another_thread = ldv_undef_int();
639
640 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'lock' */
641 if (is_mutex_held_by_another_thread)
642 {
643 /* LDV_COMMENT_RETURN Finish with fail */
644 return 0;
645 }
646 else
647 {
648 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'lock' */
649 ldv_mutex_lock = 2;
650 /* LDV_COMMENT_RETURN Finish with success */
651 return 1;
652 }
653 }
654
655 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_atomic_dec_and_mutex_lock_lock') Lock mutex 'lock' if atomic decrement result is zero */
656 int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt, struct mutex *lock)
657 {
658 int atomic_value_after_dec;
659
660 /* LDV_COMMENT_ASSERT Mutex 'lock' must be unlocked (since we may lock it in this function) */
661 ldv_assert(ldv_mutex_lock == 1);
662
663 /* LDV_COMMENT_OTHER Assign the result of atomic decrement */
664 atomic_value_after_dec = ldv_undef_int();
665
666 /* LDV_COMMENT_ASSERT Check if atomic decrement returns zero */
667 if (atomic_value_after_dec == 0)
668 {
669 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'lock', as atomic has decremented to zero */
670 ldv_mutex_lock = 2;
671 /* LDV_COMMENT_RETURN Return 1 with locked mutex 'lock' */
672 return 1;
673 }
674
675 /* LDV_COMMENT_RETURN Atomic decrement is still not zero, return 0 without locking mutex 'lock' */
676 return 0;
677 }
678
679 /* TODO Syncronize with 39_7a ldv_spin_is_locked! */
680 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_is_locked_lock') Check whether mutex 'lock' was locked */
681 int ldv_mutex_is_locked_lock(struct mutex *lock)
682 {
683 int nondetermined;
684
685 if(ldv_mutex_lock == 1)
686 {
687 /* LDV_COMMENT_OTHER Construct nondetermined result */
688 nondetermined = ldv_undef_int();
689
690 /* LDV_COMMENT_ASSERT Nondeterministically understand whether mutex 'lock' was locked */
691 if(nondetermined)
692 {
693 /* LDV_COMMENT_RETURN Mutex 'lock' was unlocked */
694 return 0;
695 }
696 else
697 {
698 /* LDV_COMMENT_RETURN Mutex 'lock' was locked */
699 return 1;
700 }
701 }
702 else
703 {
704 /* LDV_COMMENT_RETURN Mutex 'lock' was locked */
705 return 1;
706 }
707 }
708
709 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_unlock_lock') Check that mutex 'lock' was locked and unlock it */
710 void ldv_mutex_unlock_lock(struct mutex *lock)
711 {
712 /* LDV_COMMENT_ASSERT Mutex 'lock' must be locked */
713 ldv_assert(ldv_mutex_lock == 2);
714 /* LDV_COMMENT_CHANGE_STATE Unlock mutex 'lock' */
715 ldv_mutex_lock = 1;
716 }
717
718
719
720 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device') Acquires the usb lock and checks for double usb lock*/
721 void ldv_usb_lock_device_lock(void)
722 {
723 /* LDV_COMMENT_CHANGE_STATE Lock usb_lock 'lock' */
724 ldv_mutex_lock_lock(NULL);
725 }
726
727 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_trylock_device') Tries to acquire the usb lock and returns 1 if successful*/
728 int ldv_usb_trylock_device_lock(void)
729 {
730 return ldv_mutex_trylock_lock(NULL);
731 }
732
733 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device_for_reset') Tries to acquire the usb lock and returns 0 if successful*/
734 int ldv_usb_lock_device_for_reset_lock(void)
735 {
736 if(ldv_undef_int()) {
737 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'lock' */
738 ldv_mutex_lock_lock(NULL);
739 /* LDV_COMMENT_RETURN Finish with success */
740 return 0;
741 } else
742 /* LDV_COMMENT_RETURN Usb lock is not acquired*/
743 return ldv_undef_int_negative();
744 }
745
746 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_unlock_device') Releases the usb lock and checks that usb lock was acquired before*/
747 void ldv_usb_unlock_device_lock(void) {
748 /* LDV_COMMENT_CHANGE_STATE Unlock usb_lock 'lock' */
749 ldv_mutex_unlock_lock(NULL);
750 }
751
752 static int ldv_mutex_mutex_of_device = 1;
753
754 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_interruptible_mutex_of_device') Check that mutex 'mutex_of_device' was unlocked and nondeterministically lock it. Return the corresponding error code on fails */
755 int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock)
756 {
757 int nondetermined;
758
759 /* LDV_COMMENT_ASSERT Mutex 'mutex_of_device' must be unlocked */
760 ldv_assert(ldv_mutex_mutex_of_device == 1);
761
762 /* LDV_COMMENT_OTHER Construct nondetermined result*/
763 nondetermined = ldv_undef_int();
764
765 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'mutex_of_device' */
766 if (nondetermined)
767 {
768 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'mutex_of_device' */
769 ldv_mutex_mutex_of_device = 2;
770 /* LDV_COMMENT_RETURN Finish with success */
771 return 0;
772 }
773 else
774 {
775 /* LDV_COMMENT_RETURN Finish with fail. Mutex 'mutex_of_device' is keeped unlocked */
776 return -EINTR;
777 }
778 }
779
780 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_killable_mutex_of_device') Check that mutex 'mutex_of_device' wasn unlocked and nondeterministically lock it. Return the corresponding error code on fails*/
781 int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock)
782 {
783 int nondetermined;
784
785 /* LDV_COMMENT_ASSERT Mutex 'mutex_of_device' must be unlocked */
786 ldv_assert(ldv_mutex_mutex_of_device == 1);
787
788 /* LDV_COMMENT_OTHER Construct nondetermined result */
789 nondetermined = ldv_undef_int();
790
791 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'mutex_of_device' */
792 if (nondetermined)
793 {
794 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'mutex_of_device' */
795 ldv_mutex_mutex_of_device = 2;
796 /* LDV_COMMENT_RETURN Finish with success*/
797 return 0;
798 }
799 else
800 {
801 /* LDV_COMMENT_RETURN Finish with the fail. Mutex 'mutex_of_device' is keeped unlocked */
802 return -EINTR;
803 }
804 }
805
806 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_lock_mutex_of_device') Check that mutex 'mutex_of_device' was not locked and lock it */
807 void ldv_mutex_lock_mutex_of_device(struct mutex *lock)
808 {
809 /* LDV_COMMENT_ASSERT Mutex 'mutex_of_device' must be unlocked */
810 ldv_assert(ldv_mutex_mutex_of_device == 1);
811 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'mutex_of_device' */
812 ldv_mutex_mutex_of_device = 2;
813 }
814
815 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_trylock_mutex_of_device') Check that mutex 'mutex_of_device' was not locked and nondeterministically lock it. Return 0 on fails */
816 int ldv_mutex_trylock_mutex_of_device(struct mutex *lock)
817 {
818 int is_mutex_held_by_another_thread;
819
820 /* LDV_COMMENT_ASSERT It may be an error if mutex 'mutex_of_device' is locked at this point */
821 ldv_assert(ldv_mutex_mutex_of_device == 1);
822
823 /* LDV_COMMENT_OTHER Construct nondetermined result */
824 is_mutex_held_by_another_thread = ldv_undef_int();
825
826 /* LDV_COMMENT_ASSERT Nondeterministically lock mutex 'mutex_of_device' */
827 if (is_mutex_held_by_another_thread)
828 {
829 /* LDV_COMMENT_RETURN Finish with fail */
830 return 0;
831 }
832 else
833 {
834 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'mutex_of_device' */
835 ldv_mutex_mutex_of_device = 2;
836 /* LDV_COMMENT_RETURN Finish with success */
837 return 1;
838 }
839 }
840
841 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_atomic_dec_and_mutex_lock_mutex_of_device') Lock mutex 'mutex_of_device' if atomic decrement result is zero */
842 int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt, struct mutex *lock)
843 {
844 int atomic_value_after_dec;
845
846 /* LDV_COMMENT_ASSERT Mutex 'mutex_of_device' must be unlocked (since we may lock it in this function) */
847 ldv_assert(ldv_mutex_mutex_of_device == 1);
848
849 /* LDV_COMMENT_OTHER Assign the result of atomic decrement */
850 atomic_value_after_dec = ldv_undef_int();
851
852 /* LDV_COMMENT_ASSERT Check if atomic decrement returns zero */
853 if (atomic_value_after_dec == 0)
854 {
855 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'mutex_of_device', as atomic has decremented to zero */
856 ldv_mutex_mutex_of_device = 2;
857 /* LDV_COMMENT_RETURN Return 1 with locked mutex 'mutex_of_device' */
858 return 1;
859 }
860
861 /* LDV_COMMENT_RETURN Atomic decrement is still not zero, return 0 without locking mutex 'mutex_of_device' */
862 return 0;
863 }
864
865 /* TODO Syncronize with 39_7a ldv_spin_is_locked! */
866 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_is_locked_mutex_of_device') Check whether mutex 'mutex_of_device' was locked */
867 int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock)
868 {
869 int nondetermined;
870
871 if(ldv_mutex_mutex_of_device == 1)
872 {
873 /* LDV_COMMENT_OTHER Construct nondetermined result */
874 nondetermined = ldv_undef_int();
875
876 /* LDV_COMMENT_ASSERT Nondeterministically understand whether mutex 'mutex_of_device' was locked */
877 if(nondetermined)
878 {
879 /* LDV_COMMENT_RETURN Mutex 'mutex_of_device' was unlocked */
880 return 0;
881 }
882 else
883 {
884 /* LDV_COMMENT_RETURN Mutex 'mutex_of_device' was locked */
885 return 1;
886 }
887 }
888 else
889 {
890 /* LDV_COMMENT_RETURN Mutex 'mutex_of_device' was locked */
891 return 1;
892 }
893 }
894
895 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_mutex_unlock_mutex_of_device') Check that mutex 'mutex_of_device' was locked and unlock it */
896 void ldv_mutex_unlock_mutex_of_device(struct mutex *lock)
897 {
898 /* LDV_COMMENT_ASSERT Mutex 'mutex_of_device' must be locked */
899 ldv_assert(ldv_mutex_mutex_of_device == 2);
900 /* LDV_COMMENT_CHANGE_STATE Unlock mutex 'mutex_of_device' */
901 ldv_mutex_mutex_of_device = 1;
902 }
903
904
905
906 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device') Acquires the usb lock and checks for double usb lock*/
907 void ldv_usb_lock_device_mutex_of_device(void)
908 {
909 /* LDV_COMMENT_CHANGE_STATE Lock usb_lock 'mutex_of_device' */
910 ldv_mutex_lock_mutex_of_device(NULL);
911 }
912
913 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_trylock_device') Tries to acquire the usb lock and returns 1 if successful*/
914 int ldv_usb_trylock_device_mutex_of_device(void)
915 {
916 return ldv_mutex_trylock_mutex_of_device(NULL);
917 }
918
919 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_lock_device_for_reset') Tries to acquire the usb lock and returns 0 if successful*/
920 int ldv_usb_lock_device_for_reset_mutex_of_device(void)
921 {
922 if(ldv_undef_int()) {
923 /* LDV_COMMENT_CHANGE_STATE Lock mutex 'mutex_of_device' */
924 ldv_mutex_lock_mutex_of_device(NULL);
925 /* LDV_COMMENT_RETURN Finish with success */
926 return 0;
927 } else
928 /* LDV_COMMENT_RETURN Usb lock is not acquired*/
929 return ldv_undef_int_negative();
930 }
931
932 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_usb_unlock_device') Releases the usb lock and checks that usb lock was acquired before*/
933 void ldv_usb_unlock_device_mutex_of_device(void) {
934 /* LDV_COMMENT_CHANGE_STATE Unlock usb_lock 'mutex_of_device' */
935 ldv_mutex_unlock_mutex_of_device(NULL);
936 }
937
938
939 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_check_final_state') Check that all mutexes are unlocked at the end */
940 void ldv_check_final_state(void)
941 {
942 /* LDV_COMMENT_ASSERT Mutex 'ctx_lock_of_imon_context' must be unlocked at the end */
943 ldv_assert(ldv_mutex_ctx_lock_of_imon_context == 1);
944 /* LDV_COMMENT_ASSERT Mutex 'driver_lock' must be unlocked at the end */
945 ldv_assert(ldv_mutex_driver_lock == 1);
946 /* LDV_COMMENT_ASSERT Mutex 'i_mutex_of_inode' must be unlocked at the end */
947 ldv_assert(ldv_mutex_i_mutex_of_inode == 1);
948 /* LDV_COMMENT_ASSERT Mutex 'lock' must be unlocked at the end */
949 ldv_assert(ldv_mutex_lock == 1);
950 /* LDV_COMMENT_ASSERT Mutex 'mutex_of_device' must be unlocked at the end */
951 ldv_assert(ldv_mutex_mutex_of_device == 1);
952 } 1 #ifndef _LDV_RCV_H_
2 #define _LDV_RCV_H_
3
4 /* If expr evaluates to zero, ldv_assert() causes a program to reach the error
5 label like the standard assert(). */
6 #define ldv_assert(expr) ((expr) ? 0 : ldv_error())
7
8 /* The error label wrapper. It is used because of some static verifiers (like
9 BLAST) don't accept multiple error labels through a program. */
10 static inline void ldv_error(void)
11 {
12 LDV_ERROR: goto LDV_ERROR;
13 }
14
15 /* If expr evaluates to zero, ldv_assume() causes an infinite loop that is
16 avoided by verifiers. */
17 #define ldv_assume(expr) ((expr) ? 0 : ldv_stop())
18
19 /* Infinite loop, that causes verifiers to skip such paths. */
20 static inline void ldv_stop(void) {
21 LDV_STOP: goto LDV_STOP;
22 }
23
24 /* Special nondeterministic functions. */
25 int ldv_undef_int(void);
26 void *ldv_undef_ptr(void);
27 unsigned long ldv_undef_ulong(void);
28 long ldv_undef_long(void);
29 /* Return nondeterministic negative integer number. */
30 static inline int ldv_undef_int_negative(void)
31 {
32 int ret = ldv_undef_int();
33
34 ldv_assume(ret < 0);
35
36 return ret;
37 }
38 /* Return nondeterministic nonpositive integer number. */
39 static inline int ldv_undef_int_nonpositive(void)
40 {
41 int ret = ldv_undef_int();
42
43 ldv_assume(ret <= 0);
44
45 return ret;
46 }
47
48 /* Add explicit model for __builin_expect GCC function. Without the model a
49 return value will be treated as nondetermined by verifiers. */
50 static inline long __builtin_expect(long exp, long c)
51 {
52 return exp;
53 }
54
55 /* This function causes the program to exit abnormally. GCC implements this
56 function by using a target-dependent mechanism (such as intentionally executing
57 an illegal instruction) or by calling abort. The mechanism used may vary from
58 release to release so you should not rely on any particular implementation.
59 http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html */
60 static inline void __builtin_trap(void)
61 {
62 ldv_assert(0);
63 }
64
65 /* The constant is for simulating an error of ldv_undef_ptr() function. */
66 #define LDV_PTR_MAX 2012
67
68 #endif /* _LDV_RCV_H_ */ 1 /*
2 * device.h - generic, centralized driver model
3 *
4 * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org>
5 * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de>
6 * Copyright (c) 2008-2009 Novell Inc.
7 *
8 * This file is released under the GPLv2
9 *
10 * See Documentation/driver-model/ for more information.
11 */
12
13 #ifndef _DEVICE_H_
14 #define _DEVICE_H_
15
16 #include <linux/ioport.h>
17 #include <linux/kobject.h>
18 #include <linux/klist.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/compiler.h>
22 #include <linux/types.h>
23 #include <linux/mutex.h>
24 #include <linux/pinctrl/devinfo.h>
25 #include <linux/pm.h>
26 #include <linux/atomic.h>
27 #include <linux/ratelimit.h>
28 #include <linux/uidgid.h>
29 #include <linux/gfp.h>
30 #include <asm/device.h>
31
32 struct device;
33 struct device_private;
34 struct device_driver;
35 struct driver_private;
36 struct module;
37 struct class;
38 struct subsys_private;
39 struct bus_type;
40 struct device_node;
41 struct fwnode_handle;
42 struct iommu_ops;
43 struct iommu_group;
44
45 struct bus_attribute {
46 struct attribute attr;
47 ssize_t (*show)(struct bus_type *bus, char *buf);
48 ssize_t (*store)(struct bus_type *bus, const char *buf, size_t count);
49 };
50
51 #define BUS_ATTR(_name, _mode, _show, _store) \
52 struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store)
53 #define BUS_ATTR_RW(_name) \
54 struct bus_attribute bus_attr_##_name = __ATTR_RW(_name)
55 #define BUS_ATTR_RO(_name) \
56 struct bus_attribute bus_attr_##_name = __ATTR_RO(_name)
57
58 extern int __must_check bus_create_file(struct bus_type *,
59 struct bus_attribute *);
60 extern void bus_remove_file(struct bus_type *, struct bus_attribute *);
61
62 /**
63 * struct bus_type - The bus type of the device
64 *
65 * @name: The name of the bus.
66 * @dev_name: Used for subsystems to enumerate devices like ("foo%u", dev->id).
67 * @dev_root: Default device to use as the parent.
68 * @dev_attrs: Default attributes of the devices on the bus.
69 * @bus_groups: Default attributes of the bus.
70 * @dev_groups: Default attributes of the devices on the bus.
71 * @drv_groups: Default attributes of the device drivers on the bus.
72 * @match: Called, perhaps multiple times, whenever a new device or driver
73 * is added for this bus. It should return a nonzero value if the
74 * given device can be handled by the given driver.
75 * @uevent: Called when a device is added, removed, or a few other things
76 * that generate uevents to add the environment variables.
77 * @probe: Called when a new device or driver add to this bus, and callback
78 * the specific driver's probe to initial the matched device.
79 * @remove: Called when a device removed from this bus.
80 * @shutdown: Called at shut-down time to quiesce the device.
81 *
82 * @online: Called to put the device back online (after offlining it).
83 * @offline: Called to put the device offline for hot-removal. May fail.
84 *
85 * @suspend: Called when a device on this bus wants to go to sleep mode.
86 * @resume: Called to bring a device on this bus out of sleep mode.
87 * @pm: Power management operations of this bus, callback the specific
88 * device driver's pm-ops.
89 * @iommu_ops: IOMMU specific operations for this bus, used to attach IOMMU
90 * driver implementations to a bus and allow the driver to do
91 * bus-specific setup
92 * @p: The private data of the driver core, only the driver core can
93 * touch this.
94 * @lock_key: Lock class key for use by the lock validator
95 *
96 * A bus is a channel between the processor and one or more devices. For the
97 * purposes of the device model, all devices are connected via a bus, even if
98 * it is an internal, virtual, "platform" bus. Buses can plug into each other.
99 * A USB controller is usually a PCI device, for example. The device model
100 * represents the actual connections between buses and the devices they control.
101 * A bus is represented by the bus_type structure. It contains the name, the
102 * default attributes, the bus' methods, PM operations, and the driver core's
103 * private data.
104 */
105 struct bus_type {
106 const char *name;
107 const char *dev_name;
108 struct device *dev_root;
109 struct device_attribute *dev_attrs; /* use dev_groups instead */
110 const struct attribute_group **bus_groups;
111 const struct attribute_group **dev_groups;
112 const struct attribute_group **drv_groups;
113
114 int (*match)(struct device *dev, struct device_driver *drv);
115 int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
116 int (*probe)(struct device *dev);
117 int (*remove)(struct device *dev);
118 void (*shutdown)(struct device *dev);
119
120 int (*online)(struct device *dev);
121 int (*offline)(struct device *dev);
122
123 int (*suspend)(struct device *dev, pm_message_t state);
124 int (*resume)(struct device *dev);
125
126 const struct dev_pm_ops *pm;
127
128 const struct iommu_ops *iommu_ops;
129
130 struct subsys_private *p;
131 struct lock_class_key lock_key;
132 };
133
134 extern int __must_check bus_register(struct bus_type *bus);
135
136 extern void bus_unregister(struct bus_type *bus);
137
138 extern int __must_check bus_rescan_devices(struct bus_type *bus);
139
140 /* iterator helpers for buses */
141 struct subsys_dev_iter {
142 struct klist_iter ki;
143 const struct device_type *type;
144 };
145 void subsys_dev_iter_init(struct subsys_dev_iter *iter,
146 struct bus_type *subsys,
147 struct device *start,
148 const struct device_type *type);
149 struct device *subsys_dev_iter_next(struct subsys_dev_iter *iter);
150 void subsys_dev_iter_exit(struct subsys_dev_iter *iter);
151
152 int bus_for_each_dev(struct bus_type *bus, struct device *start, void *data,
153 int (*fn)(struct device *dev, void *data));
154 struct device *bus_find_device(struct bus_type *bus, struct device *start,
155 void *data,
156 int (*match)(struct device *dev, void *data));
157 struct device *bus_find_device_by_name(struct bus_type *bus,
158 struct device *start,
159 const char *name);
160 struct device *subsys_find_device_by_id(struct bus_type *bus, unsigned int id,
161 struct device *hint);
162 int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,
163 void *data, int (*fn)(struct device_driver *, void *));
164 void bus_sort_breadthfirst(struct bus_type *bus,
165 int (*compare)(const struct device *a,
166 const struct device *b));
167 /*
168 * Bus notifiers: Get notified of addition/removal of devices
169 * and binding/unbinding of drivers to devices.
170 * In the long run, it should be a replacement for the platform
171 * notify hooks.
172 */
173 struct notifier_block;
174
175 extern int bus_register_notifier(struct bus_type *bus,
176 struct notifier_block *nb);
177 extern int bus_unregister_notifier(struct bus_type *bus,
178 struct notifier_block *nb);
179
180 /* All 4 notifers below get called with the target struct device *
181 * as an argument. Note that those functions are likely to be called
182 * with the device lock held in the core, so be careful.
183 */
184 #define BUS_NOTIFY_ADD_DEVICE 0x00000001 /* device added */
185 #define BUS_NOTIFY_DEL_DEVICE 0x00000002 /* device to be removed */
186 #define BUS_NOTIFY_REMOVED_DEVICE 0x00000003 /* device removed */
187 #define BUS_NOTIFY_BIND_DRIVER 0x00000004 /* driver about to be
188 bound */
189 #define BUS_NOTIFY_BOUND_DRIVER 0x00000005 /* driver bound to device */
190 #define BUS_NOTIFY_UNBIND_DRIVER 0x00000006 /* driver about to be
191 unbound */
192 #define BUS_NOTIFY_UNBOUND_DRIVER 0x00000007 /* driver is unbound
193 from the device */
194
195 extern struct kset *bus_get_kset(struct bus_type *bus);
196 extern struct klist *bus_get_device_klist(struct bus_type *bus);
197
198 /**
199 * enum probe_type - device driver probe type to try
200 * Device drivers may opt in for special handling of their
201 * respective probe routines. This tells the core what to
202 * expect and prefer.
203 *
204 * @PROBE_DEFAULT_STRATEGY: Used by drivers that work equally well
205 * whether probed synchronously or asynchronously.
206 * @PROBE_PREFER_ASYNCHRONOUS: Drivers for "slow" devices which
207 * probing order is not essential for booting the system may
208 * opt into executing their probes asynchronously.
209 * @PROBE_FORCE_SYNCHRONOUS: Use this to annotate drivers that need
210 * their probe routines to run synchronously with driver and
211 * device registration (with the exception of -EPROBE_DEFER
212 * handling - re-probing always ends up being done asynchronously).
213 *
214 * Note that the end goal is to switch the kernel to use asynchronous
215 * probing by default, so annotating drivers with
216 * %PROBE_PREFER_ASYNCHRONOUS is a temporary measure that allows us
217 * to speed up boot process while we are validating the rest of the
218 * drivers.
219 */
220 enum probe_type {
221 PROBE_DEFAULT_STRATEGY,
222 PROBE_PREFER_ASYNCHRONOUS,
223 PROBE_FORCE_SYNCHRONOUS,
224 };
225
226 /**
227 * struct device_driver - The basic device driver structure
228 * @name: Name of the device driver.
229 * @bus: The bus which the device of this driver belongs to.
230 * @owner: The module owner.
231 * @mod_name: Used for built-in modules.
232 * @suppress_bind_attrs: Disables bind/unbind via sysfs.
233 * @probe_type: Type of the probe (synchronous or asynchronous) to use.
234 * @of_match_table: The open firmware table.
235 * @acpi_match_table: The ACPI match table.
236 * @probe: Called to query the existence of a specific device,
237 * whether this driver can work with it, and bind the driver
238 * to a specific device.
239 * @remove: Called when the device is removed from the system to
240 * unbind a device from this driver.
241 * @shutdown: Called at shut-down time to quiesce the device.
242 * @suspend: Called to put the device to sleep mode. Usually to a
243 * low power state.
244 * @resume: Called to bring a device from sleep mode.
245 * @groups: Default attributes that get created by the driver core
246 * automatically.
247 * @pm: Power management operations of the device which matched
248 * this driver.
249 * @p: Driver core's private data, no one other than the driver
250 * core can touch this.
251 *
252 * The device driver-model tracks all of the drivers known to the system.
253 * The main reason for this tracking is to enable the driver core to match
254 * up drivers with new devices. Once drivers are known objects within the
255 * system, however, a number of other things become possible. Device drivers
256 * can export information and configuration variables that are independent
257 * of any specific device.
258 */
259 struct device_driver {
260 const char *name;
261 struct bus_type *bus;
262
263 struct module *owner;
264 const char *mod_name; /* used for built-in modules */
265
266 bool suppress_bind_attrs; /* disables bind/unbind via sysfs */
267 enum probe_type probe_type;
268
269 const struct of_device_id *of_match_table;
270 const struct acpi_device_id *acpi_match_table;
271
272 int (*probe) (struct device *dev);
273 int (*remove) (struct device *dev);
274 void (*shutdown) (struct device *dev);
275 int (*suspend) (struct device *dev, pm_message_t state);
276 int (*resume) (struct device *dev);
277 const struct attribute_group **groups;
278
279 const struct dev_pm_ops *pm;
280
281 struct driver_private *p;
282 };
283
284
285 extern int __must_check driver_register(struct device_driver *drv);
286 extern void driver_unregister(struct device_driver *drv);
287
288 extern struct device_driver *driver_find(const char *name,
289 struct bus_type *bus);
290 extern int driver_probe_done(void);
291 extern void wait_for_device_probe(void);
292
293
294 /* sysfs interface for exporting driver attributes */
295
296 struct driver_attribute {
297 struct attribute attr;
298 ssize_t (*show)(struct device_driver *driver, char *buf);
299 ssize_t (*store)(struct device_driver *driver, const char *buf,
300 size_t count);
301 };
302
303 #define DRIVER_ATTR(_name, _mode, _show, _store) \
304 struct driver_attribute driver_attr_##_name = __ATTR(_name, _mode, _show, _store)
305 #define DRIVER_ATTR_RW(_name) \
306 struct driver_attribute driver_attr_##_name = __ATTR_RW(_name)
307 #define DRIVER_ATTR_RO(_name) \
308 struct driver_attribute driver_attr_##_name = __ATTR_RO(_name)
309 #define DRIVER_ATTR_WO(_name) \
310 struct driver_attribute driver_attr_##_name = __ATTR_WO(_name)
311
312 extern int __must_check driver_create_file(struct device_driver *driver,
313 const struct driver_attribute *attr);
314 extern void driver_remove_file(struct device_driver *driver,
315 const struct driver_attribute *attr);
316
317 extern int __must_check driver_for_each_device(struct device_driver *drv,
318 struct device *start,
319 void *data,
320 int (*fn)(struct device *dev,
321 void *));
322 struct device *driver_find_device(struct device_driver *drv,
323 struct device *start, void *data,
324 int (*match)(struct device *dev, void *data));
325
326 /**
327 * struct subsys_interface - interfaces to device functions
328 * @name: name of the device function
329 * @subsys: subsytem of the devices to attach to
330 * @node: the list of functions registered at the subsystem
331 * @add_dev: device hookup to device function handler
332 * @remove_dev: device hookup to device function handler
333 *
334 * Simple interfaces attached to a subsystem. Multiple interfaces can
335 * attach to a subsystem and its devices. Unlike drivers, they do not
336 * exclusively claim or control devices. Interfaces usually represent
337 * a specific functionality of a subsystem/class of devices.
338 */
339 struct subsys_interface {
340 const char *name;
341 struct bus_type *subsys;
342 struct list_head node;
343 int (*add_dev)(struct device *dev, struct subsys_interface *sif);
344 void (*remove_dev)(struct device *dev, struct subsys_interface *sif);
345 };
346
347 int subsys_interface_register(struct subsys_interface *sif);
348 void subsys_interface_unregister(struct subsys_interface *sif);
349
350 int subsys_system_register(struct bus_type *subsys,
351 const struct attribute_group **groups);
352 int subsys_virtual_register(struct bus_type *subsys,
353 const struct attribute_group **groups);
354
355 /**
356 * struct class - device classes
357 * @name: Name of the class.
358 * @owner: The module owner.
359 * @class_attrs: Default attributes of this class.
360 * @dev_groups: Default attributes of the devices that belong to the class.
361 * @dev_kobj: The kobject that represents this class and links it into the hierarchy.
362 * @dev_uevent: Called when a device is added, removed from this class, or a
363 * few other things that generate uevents to add the environment
364 * variables.
365 * @devnode: Callback to provide the devtmpfs.
366 * @class_release: Called to release this class.
367 * @dev_release: Called to release the device.
368 * @suspend: Used to put the device to sleep mode, usually to a low power
369 * state.
370 * @resume: Used to bring the device from the sleep mode.
371 * @ns_type: Callbacks so sysfs can detemine namespaces.
372 * @namespace: Namespace of the device belongs to this class.
373 * @pm: The default device power management operations of this class.
374 * @p: The private data of the driver core, no one other than the
375 * driver core can touch this.
376 *
377 * A class is a higher-level view of a device that abstracts out low-level
378 * implementation details. Drivers may see a SCSI disk or an ATA disk, but,
379 * at the class level, they are all simply disks. Classes allow user space
380 * to work with devices based on what they do, rather than how they are
381 * connected or how they work.
382 */
383 struct class {
384 const char *name;
385 struct module *owner;
386
387 struct class_attribute *class_attrs;
388 const struct attribute_group **dev_groups;
389 struct kobject *dev_kobj;
390
391 int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env);
392 char *(*devnode)(struct device *dev, umode_t *mode);
393
394 void (*class_release)(struct class *class);
395 void (*dev_release)(struct device *dev);
396
397 int (*suspend)(struct device *dev, pm_message_t state);
398 int (*resume)(struct device *dev);
399
400 const struct kobj_ns_type_operations *ns_type;
401 const void *(*namespace)(struct device *dev);
402
403 const struct dev_pm_ops *pm;
404
405 struct subsys_private *p;
406 };
407
408 struct class_dev_iter {
409 struct klist_iter ki;
410 const struct device_type *type;
411 };
412
413 extern struct kobject *sysfs_dev_block_kobj;
414 extern struct kobject *sysfs_dev_char_kobj;
415 extern int __must_check __class_register(struct class *class,
416 struct lock_class_key *key);
417 extern void class_unregister(struct class *class);
418
419 /* This is a #define to keep the compiler from merging different
420 * instances of the __key variable */
421 #define class_register(class) \
422 ({ \
423 static struct lock_class_key __key; \
424 __class_register(class, &__key); \
425 })
426
427 struct class_compat;
428 struct class_compat *class_compat_register(const char *name);
429 void class_compat_unregister(struct class_compat *cls);
430 int class_compat_create_link(struct class_compat *cls, struct device *dev,
431 struct device *device_link);
432 void class_compat_remove_link(struct class_compat *cls, struct device *dev,
433 struct device *device_link);
434
435 extern void class_dev_iter_init(struct class_dev_iter *iter,
436 struct class *class,
437 struct device *start,
438 const struct device_type *type);
439 extern struct device *class_dev_iter_next(struct class_dev_iter *iter);
440 extern void class_dev_iter_exit(struct class_dev_iter *iter);
441
442 extern int class_for_each_device(struct class *class, struct device *start,
443 void *data,
444 int (*fn)(struct device *dev, void *data));
445 extern struct device *class_find_device(struct class *class,
446 struct device *start, const void *data,
447 int (*match)(struct device *, const void *));
448
449 struct class_attribute {
450 struct attribute attr;
451 ssize_t (*show)(struct class *class, struct class_attribute *attr,
452 char *buf);
453 ssize_t (*store)(struct class *class, struct class_attribute *attr,
454 const char *buf, size_t count);
455 };
456
457 #define CLASS_ATTR(_name, _mode, _show, _store) \
458 struct class_attribute class_attr_##_name = __ATTR(_name, _mode, _show, _store)
459 #define CLASS_ATTR_RW(_name) \
460 struct class_attribute class_attr_##_name = __ATTR_RW(_name)
461 #define CLASS_ATTR_RO(_name) \
462 struct class_attribute class_attr_##_name = __ATTR_RO(_name)
463
464 extern int __must_check class_create_file_ns(struct class *class,
465 const struct class_attribute *attr,
466 const void *ns);
467 extern void class_remove_file_ns(struct class *class,
468 const struct class_attribute *attr,
469 const void *ns);
470
471 static inline int __must_check class_create_file(struct class *class,
472 const struct class_attribute *attr)
473 {
474 return class_create_file_ns(class, attr, NULL);
475 }
476
477 static inline void class_remove_file(struct class *class,
478 const struct class_attribute *attr)
479 {
480 return class_remove_file_ns(class, attr, NULL);
481 }
482
483 /* Simple class attribute that is just a static string */
484 struct class_attribute_string {
485 struct class_attribute attr;
486 char *str;
487 };
488
489 /* Currently read-only only */
490 #define _CLASS_ATTR_STRING(_name, _mode, _str) \
491 { __ATTR(_name, _mode, show_class_attr_string, NULL), _str }
492 #define CLASS_ATTR_STRING(_name, _mode, _str) \
493 struct class_attribute_string class_attr_##_name = \
494 _CLASS_ATTR_STRING(_name, _mode, _str)
495
496 extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr,
497 char *buf);
498
499 struct class_interface {
500 struct list_head node;
501 struct class *class;
502
503 int (*add_dev) (struct device *, struct class_interface *);
504 void (*remove_dev) (struct device *, struct class_interface *);
505 };
506
507 extern int __must_check class_interface_register(struct class_interface *);
508 extern void class_interface_unregister(struct class_interface *);
509
510 extern struct class * __must_check __class_create(struct module *owner,
511 const char *name,
512 struct lock_class_key *key);
513 extern void class_destroy(struct class *cls);
514
515 /* This is a #define to keep the compiler from merging different
516 * instances of the __key variable */
517 #define class_create(owner, name) \
518 ({ \
519 static struct lock_class_key __key; \
520 __class_create(owner, name, &__key); \
521 })
522
523 /*
524 * The type of device, "struct device" is embedded in. A class
525 * or bus can contain devices of different types
526 * like "partitions" and "disks", "mouse" and "event".
527 * This identifies the device type and carries type-specific
528 * information, equivalent to the kobj_type of a kobject.
529 * If "name" is specified, the uevent will contain it in
530 * the DEVTYPE variable.
531 */
532 struct device_type {
533 const char *name;
534 const struct attribute_group **groups;
535 int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
536 char *(*devnode)(struct device *dev, umode_t *mode,
537 kuid_t *uid, kgid_t *gid);
538 void (*release)(struct device *dev);
539
540 const struct dev_pm_ops *pm;
541 };
542
543 /* interface for exporting device attributes */
544 struct device_attribute {
545 struct attribute attr;
546 ssize_t (*show)(struct device *dev, struct device_attribute *attr,
547 char *buf);
548 ssize_t (*store)(struct device *dev, struct device_attribute *attr,
549 const char *buf, size_t count);
550 };
551
552 struct dev_ext_attribute {
553 struct device_attribute attr;
554 void *var;
555 };
556
557 ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr,
558 char *buf);
559 ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr,
560 const char *buf, size_t count);
561 ssize_t device_show_int(struct device *dev, struct device_attribute *attr,
562 char *buf);
563 ssize_t device_store_int(struct device *dev, struct device_attribute *attr,
564 const char *buf, size_t count);
565 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
566 char *buf);
567 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
568 const char *buf, size_t count);
569
570 #define DEVICE_ATTR(_name, _mode, _show, _store) \
571 struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
572 #define DEVICE_ATTR_RW(_name) \
573 struct device_attribute dev_attr_##_name = __ATTR_RW(_name)
574 #define DEVICE_ATTR_RO(_name) \
575 struct device_attribute dev_attr_##_name = __ATTR_RO(_name)
576 #define DEVICE_ATTR_WO(_name) \
577 struct device_attribute dev_attr_##_name = __ATTR_WO(_name)
578 #define DEVICE_ULONG_ATTR(_name, _mode, _var) \
579 struct dev_ext_attribute dev_attr_##_name = \
580 { __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) }
581 #define DEVICE_INT_ATTR(_name, _mode, _var) \
582 struct dev_ext_attribute dev_attr_##_name = \
583 { __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) }
584 #define DEVICE_BOOL_ATTR(_name, _mode, _var) \
585 struct dev_ext_attribute dev_attr_##_name = \
586 { __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) }
587 #define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \
588 struct device_attribute dev_attr_##_name = \
589 __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store)
590
591 extern int device_create_file(struct device *device,
592 const struct device_attribute *entry);
593 extern void device_remove_file(struct device *dev,
594 const struct device_attribute *attr);
595 extern bool device_remove_file_self(struct device *dev,
596 const struct device_attribute *attr);
597 extern int __must_check device_create_bin_file(struct device *dev,
598 const struct bin_attribute *attr);
599 extern void device_remove_bin_file(struct device *dev,
600 const struct bin_attribute *attr);
601
602 /* device resource management */
603 typedef void (*dr_release_t)(struct device *dev, void *res);
604 typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data);
605
606 #ifdef CONFIG_DEBUG_DEVRES
607 extern void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
608 const char *name);
609 #define devres_alloc(release, size, gfp) \
610 __devres_alloc(release, size, gfp, #release)
611 #else
612 extern void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
613 #endif
614 extern void devres_for_each_res(struct device *dev, dr_release_t release,
615 dr_match_t match, void *match_data,
616 void (*fn)(struct device *, void *, void *),
617 void *data);
618 extern void devres_free(void *res);
619 extern void devres_add(struct device *dev, void *res);
620 extern void *devres_find(struct device *dev, dr_release_t release,
621 dr_match_t match, void *match_data);
622 extern void *devres_get(struct device *dev, void *new_res,
623 dr_match_t match, void *match_data);
624 extern void *devres_remove(struct device *dev, dr_release_t release,
625 dr_match_t match, void *match_data);
626 extern int devres_destroy(struct device *dev, dr_release_t release,
627 dr_match_t match, void *match_data);
628 extern int devres_release(struct device *dev, dr_release_t release,
629 dr_match_t match, void *match_data);
630
631 /* devres group */
632 extern void * __must_check devres_open_group(struct device *dev, void *id,
633 gfp_t gfp);
634 extern void devres_close_group(struct device *dev, void *id);
635 extern void devres_remove_group(struct device *dev, void *id);
636 extern int devres_release_group(struct device *dev, void *id);
637
638 /* managed devm_k.alloc/kfree for device drivers */
639 extern void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp);
640 extern __printf(3, 0)
641 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
642 va_list ap);
643 extern __printf(3, 4)
644 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...);
645 static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp)
646 {
647 return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
648 }
649 static inline void *devm_kmalloc_array(struct device *dev,
650 size_t n, size_t size, gfp_t flags)
651 {
652 if (size != 0 && n > SIZE_MAX / size)
653 return NULL;
654 return devm_kmalloc(dev, n * size, flags);
655 }
656 static inline void *devm_kcalloc(struct device *dev,
657 size_t n, size_t size, gfp_t flags)
658 {
659 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
660 }
661 extern void devm_kfree(struct device *dev, void *p);
662 extern char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp);
663 extern void *devm_kmemdup(struct device *dev, const void *src, size_t len,
664 gfp_t gfp);
665
666 extern unsigned long devm_get_free_pages(struct device *dev,
667 gfp_t gfp_mask, unsigned int order);
668 extern void devm_free_pages(struct device *dev, unsigned long addr);
669
670 void __iomem *devm_ioremap_resource(struct device *dev, struct resource *res);
671
672 /* allows to add/remove a custom action to devres stack */
673 int devm_add_action(struct device *dev, void (*action)(void *), void *data);
674 void devm_remove_action(struct device *dev, void (*action)(void *), void *data);
675
676 struct device_dma_parameters {
677 /*
678 * a low level driver may set these to teach IOMMU code about
679 * sg limitations.
680 */
681 unsigned int max_segment_size;
682 unsigned long segment_boundary_mask;
683 };
684
685 /**
686 * struct device - The basic device structure
687 * @parent: The device's "parent" device, the device to which it is attached.
688 * In most cases, a parent device is some sort of bus or host
689 * controller. If parent is NULL, the device, is a top-level device,
690 * which is not usually what you want.
691 * @p: Holds the private data of the driver core portions of the device.
692 * See the comment of the struct device_private for detail.
693 * @kobj: A top-level, abstract class from which other classes are derived.
694 * @init_name: Initial name of the device.
695 * @type: The type of device.
696 * This identifies the device type and carries type-specific
697 * information.
698 * @mutex: Mutex to synchronize calls to its driver.
699 * @bus: Type of bus device is on.
700 * @driver: Which driver has allocated this
701 * @platform_data: Platform data specific to the device.
702 * Example: For devices on custom boards, as typical of embedded
703 * and SOC based hardware, Linux often uses platform_data to point
704 * to board-specific structures describing devices and how they
705 * are wired. That can include what ports are available, chip
706 * variants, which GPIO pins act in what additional roles, and so
707 * on. This shrinks the "Board Support Packages" (BSPs) and
708 * minimizes board-specific #ifdefs in drivers.
709 * @driver_data: Private pointer for driver specific info.
710 * @power: For device power management.
711 * See Documentation/power/devices.txt for details.
712 * @pm_domain: Provide callbacks that are executed during system suspend,
713 * hibernation, system resume and during runtime PM transitions
714 * along with subsystem-level and driver-level callbacks.
715 * @pins: For device pin management.
716 * See Documentation/pinctrl.txt for details.
717 * @msi_list: Hosts MSI descriptors
718 * @msi_domain: The generic MSI domain this device is using.
719 * @numa_node: NUMA node this device is close to.
720 * @dma_mask: Dma mask (if dma'ble device).
721 * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all
722 * hardware supports 64-bit addresses for consistent allocations
723 * such descriptors.
724 * @dma_pfn_offset: offset of DMA memory range relatively of RAM
725 * @dma_parms: A low level driver may set these to teach IOMMU code about
726 * segment limitations.
727 * @dma_pools: Dma pools (if dma'ble device).
728 * @dma_mem: Internal for coherent mem override.
729 * @cma_area: Contiguous memory area for dma allocations
730 * @archdata: For arch-specific additions.
731 * @of_node: Associated device tree node.
732 * @fwnode: Associated device node supplied by platform firmware.
733 * @devt: For creating the sysfs "dev".
734 * @id: device instance
735 * @devres_lock: Spinlock to protect the resource of the device.
736 * @devres_head: The resources list of the device.
737 * @knode_class: The node used to add the device to the class list.
738 * @class: The class of the device.
739 * @groups: Optional attribute groups.
740 * @release: Callback to free the device after all references have
741 * gone away. This should be set by the allocator of the
742 * device (i.e. the bus driver that discovered the device).
743 * @iommu_group: IOMMU group the device belongs to.
744 *
745 * @offline_disabled: If set, the device is permanently online.
746 * @offline: Set after successful invocation of bus type's .offline().
747 *
748 * At the lowest level, every device in a Linux system is represented by an
749 * instance of struct device. The device structure contains the information
750 * that the device model core needs to model the system. Most subsystems,
751 * however, track additional information about the devices they host. As a
752 * result, it is rare for devices to be represented by bare device structures;
753 * instead, that structure, like kobject structures, is usually embedded within
754 * a higher-level representation of the device.
755 */
756 struct device {
757 struct device *parent;
758
759 struct device_private *p;
760
761 struct kobject kobj;
762 const char *init_name; /* initial name of the device */
763 const struct device_type *type;
764
765 struct mutex mutex; /* mutex to synchronize calls to
766 * its driver.
767 */
768
769 struct bus_type *bus; /* type of bus device is on */
770 struct device_driver *driver; /* which driver has allocated this
771 device */
772 void *platform_data; /* Platform specific data, device
773 core doesn't touch it */
774 void *driver_data; /* Driver data, set and get with
775 dev_set/get_drvdata */
776 struct dev_pm_info power;
777 struct dev_pm_domain *pm_domain;
778
779 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
780 struct irq_domain *msi_domain;
781 #endif
782 #ifdef CONFIG_PINCTRL
783 struct dev_pin_info *pins;
784 #endif
785 #ifdef CONFIG_GENERIC_MSI_IRQ
786 struct list_head msi_list;
787 #endif
788
789 #ifdef CONFIG_NUMA
790 int numa_node; /* NUMA node this device is close to */
791 #endif
792 u64 *dma_mask; /* dma mask (if dma'able device) */
793 u64 coherent_dma_mask;/* Like dma_mask, but for
794 alloc_coherent mappings as
795 not all hardware supports
796 64 bit addresses for consistent
797 allocations such descriptors. */
798 unsigned long dma_pfn_offset;
799
800 struct device_dma_parameters *dma_parms;
801
802 struct list_head dma_pools; /* dma pools (if dma'ble) */
803
804 struct dma_coherent_mem *dma_mem; /* internal for coherent mem
805 override */
806 #ifdef CONFIG_DMA_CMA
807 struct cma *cma_area; /* contiguous memory area for dma
808 allocations */
809 #endif
810 /* arch specific additions */
811 struct dev_archdata archdata;
812
813 struct device_node *of_node; /* associated device tree node */
814 struct fwnode_handle *fwnode; /* firmware device node */
815
816 dev_t devt; /* dev_t, creates the sysfs "dev" */
817 u32 id; /* device instance */
818
819 spinlock_t devres_lock;
820 struct list_head devres_head;
821
822 struct klist_node knode_class;
823 struct class *class;
824 const struct attribute_group **groups; /* optional groups */
825
826 void (*release)(struct device *dev);
827 struct iommu_group *iommu_group;
828
829 bool offline_disabled:1;
830 bool offline:1;
831 };
832
833 static inline struct device *kobj_to_dev(struct kobject *kobj)
834 {
835 return container_of(kobj, struct device, kobj);
836 }
837
838 /* Get the wakeup routines, which depend on struct device */
839 #include <linux/pm_wakeup.h>
840
841 static inline const char *dev_name(const struct device *dev)
842 {
843 /* Use the init name until the kobject becomes available */
844 if (dev->init_name)
845 return dev->init_name;
846
847 return kobject_name(&dev->kobj);
848 }
849
850 extern __printf(2, 3)
851 int dev_set_name(struct device *dev, const char *name, ...);
852
853 #ifdef CONFIG_NUMA
854 static inline int dev_to_node(struct device *dev)
855 {
856 return dev->numa_node;
857 }
858 static inline void set_dev_node(struct device *dev, int node)
859 {
860 dev->numa_node = node;
861 }
862 #else
863 static inline int dev_to_node(struct device *dev)
864 {
865 return -1;
866 }
867 static inline void set_dev_node(struct device *dev, int node)
868 {
869 }
870 #endif
871
872 static inline struct irq_domain *dev_get_msi_domain(const struct device *dev)
873 {
874 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
875 return dev->msi_domain;
876 #else
877 return NULL;
878 #endif
879 }
880
881 static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d)
882 {
883 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
884 dev->msi_domain = d;
885 #endif
886 }
887
888 static inline void *dev_get_drvdata(const struct device *dev)
889 {
890 return dev->driver_data;
891 }
892
893 static inline void dev_set_drvdata(struct device *dev, void *data)
894 {
895 dev->driver_data = data;
896 }
897
898 static inline struct pm_subsys_data *dev_to_psd(struct device *dev)
899 {
900 return dev ? dev->power.subsys_data : NULL;
901 }
902
903 static inline unsigned int dev_get_uevent_suppress(const struct device *dev)
904 {
905 return dev->kobj.uevent_suppress;
906 }
907
908 static inline void dev_set_uevent_suppress(struct device *dev, int val)
909 {
910 dev->kobj.uevent_suppress = val;
911 }
912
913 static inline int device_is_registered(struct device *dev)
914 {
915 return dev->kobj.state_in_sysfs;
916 }
917
918 static inline void device_enable_async_suspend(struct device *dev)
919 {
920 if (!dev->power.is_prepared)
921 dev->power.async_suspend = true;
922 }
923
924 static inline void device_disable_async_suspend(struct device *dev)
925 {
926 if (!dev->power.is_prepared)
927 dev->power.async_suspend = false;
928 }
929
930 static inline bool device_async_suspend_enabled(struct device *dev)
931 {
932 return !!dev->power.async_suspend;
933 }
934
935 static inline void pm_suspend_ignore_children(struct device *dev, bool enable)
936 {
937 dev->power.ignore_children = enable;
938 }
939
940 static inline void dev_pm_syscore_device(struct device *dev, bool val)
941 {
942 #ifdef CONFIG_PM_SLEEP
943 dev->power.syscore = val;
944 #endif
945 }
946
947 static inline void device_lock(struct device *dev)
948 {
949 mutex_lock(&dev->mutex);
950 }
951
952 static inline int device_trylock(struct device *dev)
953 {
954 return mutex_trylock(&dev->mutex);
955 }
956
957 static inline void device_unlock(struct device *dev)
958 {
959 mutex_unlock(&dev->mutex);
960 }
961
962 static inline void device_lock_assert(struct device *dev)
963 {
964 lockdep_assert_held(&dev->mutex);
965 }
966
967 static inline struct device_node *dev_of_node(struct device *dev)
968 {
969 if (!IS_ENABLED(CONFIG_OF))
970 return NULL;
971 return dev->of_node;
972 }
973
974 void driver_init(void);
975
976 /*
977 * High level routines for use by the bus drivers
978 */
979 extern int __must_check device_register(struct device *dev);
980 extern void device_unregister(struct device *dev);
981 extern void device_initialize(struct device *dev);
982 extern int __must_check device_add(struct device *dev);
983 extern void device_del(struct device *dev);
984 extern int device_for_each_child(struct device *dev, void *data,
985 int (*fn)(struct device *dev, void *data));
986 extern int device_for_each_child_reverse(struct device *dev, void *data,
987 int (*fn)(struct device *dev, void *data));
988 extern struct device *device_find_child(struct device *dev, void *data,
989 int (*match)(struct device *dev, void *data));
990 extern int device_rename(struct device *dev, const char *new_name);
991 extern int device_move(struct device *dev, struct device *new_parent,
992 enum dpm_order dpm_order);
993 extern const char *device_get_devnode(struct device *dev,
994 umode_t *mode, kuid_t *uid, kgid_t *gid,
995 const char **tmp);
996
997 static inline bool device_supports_offline(struct device *dev)
998 {
999 return dev->bus && dev->bus->offline && dev->bus->online;
1000 }
1001
1002 extern void lock_device_hotplug(void);
1003 extern void unlock_device_hotplug(void);
1004 extern int lock_device_hotplug_sysfs(void);
1005 extern int device_offline(struct device *dev);
1006 extern int device_online(struct device *dev);
1007 extern void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode);
1008 extern void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode);
1009
1010 /*
1011 * Root device objects for grouping under /sys/devices
1012 */
1013 extern struct device *__root_device_register(const char *name,
1014 struct module *owner);
1015
1016 /* This is a macro to avoid include problems with THIS_MODULE */
1017 #define root_device_register(name) \
1018 __root_device_register(name, THIS_MODULE)
1019
1020 extern void root_device_unregister(struct device *root);
1021
1022 static inline void *dev_get_platdata(const struct device *dev)
1023 {
1024 return dev->platform_data;
1025 }
1026
1027 /*
1028 * Manual binding of a device to driver. See drivers/base/bus.c
1029 * for information on use.
1030 */
1031 extern int __must_check device_bind_driver(struct device *dev);
1032 extern void device_release_driver(struct device *dev);
1033 extern int __must_check device_attach(struct device *dev);
1034 extern int __must_check driver_attach(struct device_driver *drv);
1035 extern void device_initial_probe(struct device *dev);
1036 extern int __must_check device_reprobe(struct device *dev);
1037
1038 /*
1039 * Easy functions for dynamically creating devices on the fly
1040 */
1041 extern __printf(5, 0)
1042 struct device *device_create_vargs(struct class *cls, struct device *parent,
1043 dev_t devt, void *drvdata,
1044 const char *fmt, va_list vargs);
1045 extern __printf(5, 6)
1046 struct device *device_create(struct class *cls, struct device *parent,
1047 dev_t devt, void *drvdata,
1048 const char *fmt, ...);
1049 extern __printf(6, 7)
1050 struct device *device_create_with_groups(struct class *cls,
1051 struct device *parent, dev_t devt, void *drvdata,
1052 const struct attribute_group **groups,
1053 const char *fmt, ...);
1054 extern void device_destroy(struct class *cls, dev_t devt);
1055
1056 /*
1057 * Platform "fixup" functions - allow the platform to have their say
1058 * about devices and actions that the general device layer doesn't
1059 * know about.
1060 */
1061 /* Notify platform of device discovery */
1062 extern int (*platform_notify)(struct device *dev);
1063
1064 extern int (*platform_notify_remove)(struct device *dev);
1065
1066
1067 /*
1068 * get_device - atomically increment the reference count for the device.
1069 *
1070 */
1071 extern struct device *get_device(struct device *dev);
1072 extern void put_device(struct device *dev);
1073
1074 #ifdef CONFIG_DEVTMPFS
1075 extern int devtmpfs_create_node(struct device *dev);
1076 extern int devtmpfs_delete_node(struct device *dev);
1077 extern int devtmpfs_mount(const char *mntdir);
1078 #else
1079 static inline int devtmpfs_create_node(struct device *dev) { return 0; }
1080 static inline int devtmpfs_delete_node(struct device *dev) { return 0; }
1081 static inline int devtmpfs_mount(const char *mountpoint) { return 0; }
1082 #endif
1083
1084 /* drivers/base/power/shutdown.c */
1085 extern void device_shutdown(void);
1086
1087 /* debugging and troubleshooting/diagnostic helpers. */
1088 extern const char *dev_driver_string(const struct device *dev);
1089
1090
1091 #ifdef CONFIG_PRINTK
1092
1093 extern __printf(3, 0)
1094 int dev_vprintk_emit(int level, const struct device *dev,
1095 const char *fmt, va_list args);
1096 extern __printf(3, 4)
1097 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...);
1098
1099 extern __printf(3, 4)
1100 void dev_printk(const char *level, const struct device *dev,
1101 const char *fmt, ...);
1102 extern __printf(2, 3)
1103 void dev_emerg(const struct device *dev, const char *fmt, ...);
1104 extern __printf(2, 3)
1105 void dev_alert(const struct device *dev, const char *fmt, ...);
1106 extern __printf(2, 3)
1107 void dev_crit(const struct device *dev, const char *fmt, ...);
1108 extern __printf(2, 3)
1109 void dev_err(const struct device *dev, const char *fmt, ...);
1110 extern __printf(2, 3)
1111 void dev_warn(const struct device *dev, const char *fmt, ...);
1112 extern __printf(2, 3)
1113 void dev_notice(const struct device *dev, const char *fmt, ...);
1114 extern __printf(2, 3)
1115 void _dev_info(const struct device *dev, const char *fmt, ...);
1116
1117 #else
1118
1119 static inline __printf(3, 0)
1120 int dev_vprintk_emit(int level, const struct device *dev,
1121 const char *fmt, va_list args)
1122 { return 0; }
1123 static inline __printf(3, 4)
1124 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
1125 { return 0; }
1126
1127 static inline void __dev_printk(const char *level, const struct device *dev,
1128 struct va_format *vaf)
1129 {}
1130 static inline __printf(3, 4)
1131 void dev_printk(const char *level, const struct device *dev,
1132 const char *fmt, ...)
1133 {}
1134
1135 static inline __printf(2, 3)
1136 void dev_emerg(const struct device *dev, const char *fmt, ...)
1137 {}
1138 static inline __printf(2, 3)
1139 void dev_crit(const struct device *dev, const char *fmt, ...)
1140 {}
1141 static inline __printf(2, 3)
1142 void dev_alert(const struct device *dev, const char *fmt, ...)
1143 {}
1144 static inline __printf(2, 3)
1145 void dev_err(const struct device *dev, const char *fmt, ...)
1146 {}
1147 static inline __printf(2, 3)
1148 void dev_warn(const struct device *dev, const char *fmt, ...)
1149 {}
1150 static inline __printf(2, 3)
1151 void dev_notice(const struct device *dev, const char *fmt, ...)
1152 {}
1153 static inline __printf(2, 3)
1154 void _dev_info(const struct device *dev, const char *fmt, ...)
1155 {}
1156
1157 #endif
1158
1159 /*
1160 * Stupid hackaround for existing uses of non-printk uses dev_info
1161 *
1162 * Note that the definition of dev_info below is actually _dev_info
1163 * and a macro is used to avoid redefining dev_info
1164 */
1165
1166 #define dev_info(dev, fmt, arg...) _dev_info(dev, fmt, ##arg)
1167
1168 #if defined(CONFIG_DYNAMIC_DEBUG)
1169 #define dev_dbg(dev, format, ...) \
1170 do { \
1171 dynamic_dev_dbg(dev, format, ##__VA_ARGS__); \
1172 } while (0)
1173 #elif defined(DEBUG)
1174 #define dev_dbg(dev, format, arg...) \
1175 dev_printk(KERN_DEBUG, dev, format, ##arg)
1176 #else
1177 #define dev_dbg(dev, format, arg...) \
1178 ({ \
1179 if (0) \
1180 dev_printk(KERN_DEBUG, dev, format, ##arg); \
1181 })
1182 #endif
1183
1184 #ifdef CONFIG_PRINTK
1185 #define dev_level_once(dev_level, dev, fmt, ...) \
1186 do { \
1187 static bool __print_once __read_mostly; \
1188 \
1189 if (!__print_once) { \
1190 __print_once = true; \
1191 dev_level(dev, fmt, ##__VA_ARGS__); \
1192 } \
1193 } while (0)
1194 #else
1195 #define dev_level_once(dev_level, dev, fmt, ...) \
1196 do { \
1197 if (0) \
1198 dev_level(dev, fmt, ##__VA_ARGS__); \
1199 } while (0)
1200 #endif
1201
1202 #define dev_emerg_once(dev, fmt, ...) \
1203 dev_level_once(dev_emerg, dev, fmt, ##__VA_ARGS__)
1204 #define dev_alert_once(dev, fmt, ...) \
1205 dev_level_once(dev_alert, dev, fmt, ##__VA_ARGS__)
1206 #define dev_crit_once(dev, fmt, ...) \
1207 dev_level_once(dev_crit, dev, fmt, ##__VA_ARGS__)
1208 #define dev_err_once(dev, fmt, ...) \
1209 dev_level_once(dev_err, dev, fmt, ##__VA_ARGS__)
1210 #define dev_warn_once(dev, fmt, ...) \
1211 dev_level_once(dev_warn, dev, fmt, ##__VA_ARGS__)
1212 #define dev_notice_once(dev, fmt, ...) \
1213 dev_level_once(dev_notice, dev, fmt, ##__VA_ARGS__)
1214 #define dev_info_once(dev, fmt, ...) \
1215 dev_level_once(dev_info, dev, fmt, ##__VA_ARGS__)
1216 #define dev_dbg_once(dev, fmt, ...) \
1217 dev_level_once(dev_dbg, dev, fmt, ##__VA_ARGS__)
1218
1219 #define dev_level_ratelimited(dev_level, dev, fmt, ...) \
1220 do { \
1221 static DEFINE_RATELIMIT_STATE(_rs, \
1222 DEFAULT_RATELIMIT_INTERVAL, \
1223 DEFAULT_RATELIMIT_BURST); \
1224 if (__ratelimit(&_rs)) \
1225 dev_level(dev, fmt, ##__VA_ARGS__); \
1226 } while (0)
1227
1228 #define dev_emerg_ratelimited(dev, fmt, ...) \
1229 dev_level_ratelimited(dev_emerg, dev, fmt, ##__VA_ARGS__)
1230 #define dev_alert_ratelimited(dev, fmt, ...) \
1231 dev_level_ratelimited(dev_alert, dev, fmt, ##__VA_ARGS__)
1232 #define dev_crit_ratelimited(dev, fmt, ...) \
1233 dev_level_ratelimited(dev_crit, dev, fmt, ##__VA_ARGS__)
1234 #define dev_err_ratelimited(dev, fmt, ...) \
1235 dev_level_ratelimited(dev_err, dev, fmt, ##__VA_ARGS__)
1236 #define dev_warn_ratelimited(dev, fmt, ...) \
1237 dev_level_ratelimited(dev_warn, dev, fmt, ##__VA_ARGS__)
1238 #define dev_notice_ratelimited(dev, fmt, ...) \
1239 dev_level_ratelimited(dev_notice, dev, fmt, ##__VA_ARGS__)
1240 #define dev_info_ratelimited(dev, fmt, ...) \
1241 dev_level_ratelimited(dev_info, dev, fmt, ##__VA_ARGS__)
1242 #if defined(CONFIG_DYNAMIC_DEBUG)
1243 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
1244 #define dev_dbg_ratelimited(dev, fmt, ...) \
1245 do { \
1246 static DEFINE_RATELIMIT_STATE(_rs, \
1247 DEFAULT_RATELIMIT_INTERVAL, \
1248 DEFAULT_RATELIMIT_BURST); \
1249 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
1250 if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT) && \
1251 __ratelimit(&_rs)) \
1252 __dynamic_dev_dbg(&descriptor, dev, fmt, \
1253 ##__VA_ARGS__); \
1254 } while (0)
1255 #elif defined(DEBUG)
1256 #define dev_dbg_ratelimited(dev, fmt, ...) \
1257 do { \
1258 static DEFINE_RATELIMIT_STATE(_rs, \
1259 DEFAULT_RATELIMIT_INTERVAL, \
1260 DEFAULT_RATELIMIT_BURST); \
1261 if (__ratelimit(&_rs)) \
1262 dev_printk(KERN_DEBUG, dev, fmt, ##__VA_ARGS__); \
1263 } while (0)
1264 #else
1265 #define dev_dbg_ratelimited(dev, fmt, ...) \
1266 no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__)
1267 #endif
1268
1269 #ifdef VERBOSE_DEBUG
1270 #define dev_vdbg dev_dbg
1271 #else
1272 #define dev_vdbg(dev, format, arg...) \
1273 ({ \
1274 if (0) \
1275 dev_printk(KERN_DEBUG, dev, format, ##arg); \
1276 })
1277 #endif
1278
1279 /*
1280 * dev_WARN*() acts like dev_printk(), but with the key difference of
1281 * using WARN/WARN_ONCE to include file/line information and a backtrace.
1282 */
1283 #define dev_WARN(dev, format, arg...) \
1284 WARN(1, "%s %s: " format, dev_driver_string(dev), dev_name(dev), ## arg);
1285
1286 #define dev_WARN_ONCE(dev, condition, format, arg...) \
1287 WARN_ONCE(condition, "%s %s: " format, \
1288 dev_driver_string(dev), dev_name(dev), ## arg)
1289
1290 /* Create alias, so I can be autoloaded. */
1291 #define MODULE_ALIAS_CHARDEV(major,minor) \
1292 MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor))
1293 #define MODULE_ALIAS_CHARDEV_MAJOR(major) \
1294 MODULE_ALIAS("char-major-" __stringify(major) "-*")
1295
1296 #ifdef CONFIG_SYSFS_DEPRECATED
1297 extern long sysfs_deprecated;
1298 #else
1299 #define sysfs_deprecated 0
1300 #endif
1301
1302 /**
1303 * module_driver() - Helper macro for drivers that don't do anything
1304 * special in module init/exit. This eliminates a lot of boilerplate.
1305 * Each module may only use this macro once, and calling it replaces
1306 * module_init() and module_exit().
1307 *
1308 * @__driver: driver name
1309 * @__register: register function for this driver type
1310 * @__unregister: unregister function for this driver type
1311 * @...: Additional arguments to be passed to __register and __unregister.
1312 *
1313 * Use this macro to construct bus specific macros for registering
1314 * drivers, and do not use it on its own.
1315 */
1316 #define module_driver(__driver, __register, __unregister, ...) \
1317 static int __init __driver##_init(void) \
1318 { \
1319 return __register(&(__driver) , ##__VA_ARGS__); \
1320 } \
1321 module_init(__driver##_init); \
1322 static void __exit __driver##_exit(void) \
1323 { \
1324 __unregister(&(__driver) , ##__VA_ARGS__); \
1325 } \
1326 module_exit(__driver##_exit);
1327
1328 /**
1329 * builtin_driver() - Helper macro for drivers that don't do anything
1330 * special in init and have no exit. This eliminates some boilerplate.
1331 * Each driver may only use this macro once, and calling it replaces
1332 * device_initcall (or in some cases, the legacy __initcall). This is
1333 * meant to be a direct parallel of module_driver() above but without
1334 * the __exit stuff that is not used for builtin cases.
1335 *
1336 * @__driver: driver name
1337 * @__register: register function for this driver type
1338 * @...: Additional arguments to be passed to __register
1339 *
1340 * Use this macro to construct bus specific macros for registering
1341 * drivers, and do not use it on its own.
1342 */
1343 #define builtin_driver(__driver, __register, ...) \
1344 static int __init __driver##_init(void) \
1345 { \
1346 return __register(&(__driver) , ##__VA_ARGS__); \
1347 } \
1348 device_initcall(__driver##_init);
1349
1350 #endif /* _DEVICE_H_ */ 1 /*
2 * A generic kernel FIFO implementation
3 *
4 * Copyright (C) 2013 Stefani Seibold <stefani@seibold.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 *
20 */
21
22 #ifndef _LINUX_KFIFO_H
23 #define _LINUX_KFIFO_H
24
25 /*
26 * How to porting drivers to the new generic FIFO API:
27 *
28 * - Modify the declaration of the "struct kfifo *" object into a
29 * in-place "struct kfifo" object
30 * - Init the in-place object with kfifo_alloc() or kfifo_init()
31 * Note: The address of the in-place "struct kfifo" object must be
32 * passed as the first argument to this functions
33 * - Replace the use of __kfifo_put into kfifo_in and __kfifo_get
34 * into kfifo_out
35 * - Replace the use of kfifo_put into kfifo_in_spinlocked and kfifo_get
36 * into kfifo_out_spinlocked
37 * Note: the spinlock pointer formerly passed to kfifo_init/kfifo_alloc
38 * must be passed now to the kfifo_in_spinlocked and kfifo_out_spinlocked
39 * as the last parameter
40 * - The formerly __kfifo_* functions are renamed into kfifo_*
41 */
42
43 /*
44 * Note about locking : There is no locking required until only * one reader
45 * and one writer is using the fifo and no kfifo_reset() will be * called
46 * kfifo_reset_out() can be safely used, until it will be only called
47 * in the reader thread.
48 * For multiple writer and one reader there is only a need to lock the writer.
49 * And vice versa for only one writer and multiple reader there is only a need
50 * to lock the reader.
51 */
52
53 #include <linux/kernel.h>
54 #include <linux/spinlock.h>
55 #include <linux/stddef.h>
56 #include <linux/scatterlist.h>
57
58 struct __kfifo {
59 unsigned int in;
60 unsigned int out;
61 unsigned int mask;
62 unsigned int esize;
63 void *data;
64 };
65
66 #define __STRUCT_KFIFO_COMMON(datatype, recsize, ptrtype) \
67 union { \
68 struct __kfifo kfifo; \
69 datatype *type; \
70 const datatype *const_type; \
71 char (*rectype)[recsize]; \
72 ptrtype *ptr; \
73 ptrtype const *ptr_const; \
74 }
75
76 #define __STRUCT_KFIFO(type, size, recsize, ptrtype) \
77 { \
78 __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
79 type buf[((size < 2) || (size & (size - 1))) ? -1 : size]; \
80 }
81
82 #define STRUCT_KFIFO(type, size) \
83 struct __STRUCT_KFIFO(type, size, 0, type)
84
85 #define __STRUCT_KFIFO_PTR(type, recsize, ptrtype) \
86 { \
87 __STRUCT_KFIFO_COMMON(type, recsize, ptrtype); \
88 type buf[0]; \
89 }
90
91 #define STRUCT_KFIFO_PTR(type) \
92 struct __STRUCT_KFIFO_PTR(type, 0, type)
93
94 /*
95 * define compatibility "struct kfifo" for dynamic allocated fifos
96 */
97 struct kfifo __STRUCT_KFIFO_PTR(unsigned char, 0, void);
98
99 #define STRUCT_KFIFO_REC_1(size) \
100 struct __STRUCT_KFIFO(unsigned char, size, 1, void)
101
102 #define STRUCT_KFIFO_REC_2(size) \
103 struct __STRUCT_KFIFO(unsigned char, size, 2, void)
104
105 /*
106 * define kfifo_rec types
107 */
108 struct kfifo_rec_ptr_1 __STRUCT_KFIFO_PTR(unsigned char, 1, void);
109 struct kfifo_rec_ptr_2 __STRUCT_KFIFO_PTR(unsigned char, 2, void);
110
111 /*
112 * helper macro to distinguish between real in place fifo where the fifo
113 * array is a part of the structure and the fifo type where the array is
114 * outside of the fifo structure.
115 */
116 #define __is_kfifo_ptr(fifo) (sizeof(*fifo) == sizeof(struct __kfifo))
117
118 /**
119 * DECLARE_KFIFO_PTR - macro to declare a fifo pointer object
120 * @fifo: name of the declared fifo
121 * @type: type of the fifo elements
122 */
123 #define DECLARE_KFIFO_PTR(fifo, type) STRUCT_KFIFO_PTR(type) fifo
124
125 /**
126 * DECLARE_KFIFO - macro to declare a fifo object
127 * @fifo: name of the declared fifo
128 * @type: type of the fifo elements
129 * @size: the number of elements in the fifo, this must be a power of 2
130 */
131 #define DECLARE_KFIFO(fifo, type, size) STRUCT_KFIFO(type, size) fifo
132
133 /**
134 * INIT_KFIFO - Initialize a fifo declared by DECLARE_KFIFO
135 * @fifo: name of the declared fifo datatype
136 */
137 #define INIT_KFIFO(fifo) \
138 (void)({ \
139 typeof(&(fifo)) __tmp = &(fifo); \
140 struct __kfifo *__kfifo = &__tmp->kfifo; \
141 __kfifo->in = 0; \
142 __kfifo->out = 0; \
143 __kfifo->mask = __is_kfifo_ptr(__tmp) ? 0 : ARRAY_SIZE(__tmp->buf) - 1;\
144 __kfifo->esize = sizeof(*__tmp->buf); \
145 __kfifo->data = __is_kfifo_ptr(__tmp) ? NULL : __tmp->buf; \
146 })
147
148 /**
149 * DEFINE_KFIFO - macro to define and initialize a fifo
150 * @fifo: name of the declared fifo datatype
151 * @type: type of the fifo elements
152 * @size: the number of elements in the fifo, this must be a power of 2
153 *
154 * Note: the macro can be used for global and local fifo data type variables.
155 */
156 #define DEFINE_KFIFO(fifo, type, size) \
157 DECLARE_KFIFO(fifo, type, size) = \
158 (typeof(fifo)) { \
159 { \
160 { \
161 .in = 0, \
162 .out = 0, \
163 .mask = __is_kfifo_ptr(&(fifo)) ? \
164 0 : \
165 ARRAY_SIZE((fifo).buf) - 1, \
166 .esize = sizeof(*(fifo).buf), \
167 .data = __is_kfifo_ptr(&(fifo)) ? \
168 NULL : \
169 (fifo).buf, \
170 } \
171 } \
172 }
173
174
175 static inline unsigned int __must_check
176 __kfifo_uint_must_check_helper(unsigned int val)
177 {
178 return val;
179 }
180
181 static inline int __must_check
182 __kfifo_int_must_check_helper(int val)
183 {
184 return val;
185 }
186
187 /**
188 * kfifo_initialized - Check if the fifo is initialized
189 * @fifo: address of the fifo to check
190 *
191 * Return %true if fifo is initialized, otherwise %false.
192 * Assumes the fifo was 0 before.
193 */
194 #define kfifo_initialized(fifo) ((fifo)->kfifo.mask)
195
196 /**
197 * kfifo_esize - returns the size of the element managed by the fifo
198 * @fifo: address of the fifo to be used
199 */
200 #define kfifo_esize(fifo) ((fifo)->kfifo.esize)
201
202 /**
203 * kfifo_recsize - returns the size of the record length field
204 * @fifo: address of the fifo to be used
205 */
206 #define kfifo_recsize(fifo) (sizeof(*(fifo)->rectype))
207
208 /**
209 * kfifo_size - returns the size of the fifo in elements
210 * @fifo: address of the fifo to be used
211 */
212 #define kfifo_size(fifo) ((fifo)->kfifo.mask + 1)
213
214 /**
215 * kfifo_reset - removes the entire fifo content
216 * @fifo: address of the fifo to be used
217 *
218 * Note: usage of kfifo_reset() is dangerous. It should be only called when the
219 * fifo is exclusived locked or when it is secured that no other thread is
220 * accessing the fifo.
221 */
222 #define kfifo_reset(fifo) \
223 (void)({ \
224 typeof((fifo) + 1) __tmp = (fifo); \
225 __tmp->kfifo.in = __tmp->kfifo.out = 0; \
226 })
227
228 /**
229 * kfifo_reset_out - skip fifo content
230 * @fifo: address of the fifo to be used
231 *
232 * Note: The usage of kfifo_reset_out() is safe until it will be only called
233 * from the reader thread and there is only one concurrent reader. Otherwise
234 * it is dangerous and must be handled in the same way as kfifo_reset().
235 */
236 #define kfifo_reset_out(fifo) \
237 (void)({ \
238 typeof((fifo) + 1) __tmp = (fifo); \
239 __tmp->kfifo.out = __tmp->kfifo.in; \
240 })
241
242 /**
243 * kfifo_len - returns the number of used elements in the fifo
244 * @fifo: address of the fifo to be used
245 */
246 #define kfifo_len(fifo) \
247 ({ \
248 typeof((fifo) + 1) __tmpl = (fifo); \
249 __tmpl->kfifo.in - __tmpl->kfifo.out; \
250 })
251
252 /**
253 * kfifo_is_empty - returns true if the fifo is empty
254 * @fifo: address of the fifo to be used
255 */
256 #define kfifo_is_empty(fifo) \
257 ({ \
258 typeof((fifo) + 1) __tmpq = (fifo); \
259 __tmpq->kfifo.in == __tmpq->kfifo.out; \
260 })
261
262 /**
263 * kfifo_is_full - returns true if the fifo is full
264 * @fifo: address of the fifo to be used
265 */
266 #define kfifo_is_full(fifo) \
267 ({ \
268 typeof((fifo) + 1) __tmpq = (fifo); \
269 kfifo_len(__tmpq) > __tmpq->kfifo.mask; \
270 })
271
272 /**
273 * kfifo_avail - returns the number of unused elements in the fifo
274 * @fifo: address of the fifo to be used
275 */
276 #define kfifo_avail(fifo) \
277 __kfifo_uint_must_check_helper( \
278 ({ \
279 typeof((fifo) + 1) __tmpq = (fifo); \
280 const size_t __recsize = sizeof(*__tmpq->rectype); \
281 unsigned int __avail = kfifo_size(__tmpq) - kfifo_len(__tmpq); \
282 (__recsize) ? ((__avail <= __recsize) ? 0 : \
283 __kfifo_max_r(__avail - __recsize, __recsize)) : \
284 __avail; \
285 }) \
286 )
287
288 /**
289 * kfifo_skip - skip output data
290 * @fifo: address of the fifo to be used
291 */
292 #define kfifo_skip(fifo) \
293 (void)({ \
294 typeof((fifo) + 1) __tmp = (fifo); \
295 const size_t __recsize = sizeof(*__tmp->rectype); \
296 struct __kfifo *__kfifo = &__tmp->kfifo; \
297 if (__recsize) \
298 __kfifo_skip_r(__kfifo, __recsize); \
299 else \
300 __kfifo->out++; \
301 })
302
303 /**
304 * kfifo_peek_len - gets the size of the next fifo record
305 * @fifo: address of the fifo to be used
306 *
307 * This function returns the size of the next fifo record in number of bytes.
308 */
309 #define kfifo_peek_len(fifo) \
310 __kfifo_uint_must_check_helper( \
311 ({ \
312 typeof((fifo) + 1) __tmp = (fifo); \
313 const size_t __recsize = sizeof(*__tmp->rectype); \
314 struct __kfifo *__kfifo = &__tmp->kfifo; \
315 (!__recsize) ? kfifo_len(__tmp) * sizeof(*__tmp->type) : \
316 __kfifo_len_r(__kfifo, __recsize); \
317 }) \
318 )
319
320 /**
321 * kfifo_alloc - dynamically allocates a new fifo buffer
322 * @fifo: pointer to the fifo
323 * @size: the number of elements in the fifo, this must be a power of 2
324 * @gfp_mask: get_free_pages mask, passed to kmalloc()
325 *
326 * This macro dynamically allocates a new fifo buffer.
327 *
328 * The numer of elements will be rounded-up to a power of 2.
329 * The fifo will be release with kfifo_free().
330 * Return 0 if no error, otherwise an error code.
331 */
332 #define kfifo_alloc(fifo, size, gfp_mask) \
333 __kfifo_int_must_check_helper( \
334 ({ \
335 typeof((fifo) + 1) __tmp = (fifo); \
336 struct __kfifo *__kfifo = &__tmp->kfifo; \
337 __is_kfifo_ptr(__tmp) ? \
338 __kfifo_alloc(__kfifo, size, sizeof(*__tmp->type), gfp_mask) : \
339 -EINVAL; \
340 }) \
341 )
342
343 /**
344 * kfifo_free - frees the fifo
345 * @fifo: the fifo to be freed
346 */
347 #define kfifo_free(fifo) \
348 ({ \
349 typeof((fifo) + 1) __tmp = (fifo); \
350 struct __kfifo *__kfifo = &__tmp->kfifo; \
351 if (__is_kfifo_ptr(__tmp)) \
352 __kfifo_free(__kfifo); \
353 })
354
355 /**
356 * kfifo_init - initialize a fifo using a preallocated buffer
357 * @fifo: the fifo to assign the buffer
358 * @buffer: the preallocated buffer to be used
359 * @size: the size of the internal buffer, this have to be a power of 2
360 *
361 * This macro initialize a fifo using a preallocated buffer.
362 *
363 * The numer of elements will be rounded-up to a power of 2.
364 * Return 0 if no error, otherwise an error code.
365 */
366 #define kfifo_init(fifo, buffer, size) \
367 ({ \
368 typeof((fifo) + 1) __tmp = (fifo); \
369 struct __kfifo *__kfifo = &__tmp->kfifo; \
370 __is_kfifo_ptr(__tmp) ? \
371 __kfifo_init(__kfifo, buffer, size, sizeof(*__tmp->type)) : \
372 -EINVAL; \
373 })
374
375 /**
376 * kfifo_put - put data into the fifo
377 * @fifo: address of the fifo to be used
378 * @val: the data to be added
379 *
380 * This macro copies the given value into the fifo.
381 * It returns 0 if the fifo was full. Otherwise it returns the number
382 * processed elements.
383 *
384 * Note that with only one concurrent reader and one concurrent
385 * writer, you don't need extra locking to use these macro.
386 */
387 #define kfifo_put(fifo, val) \
388 ({ \
389 typeof((fifo) + 1) __tmp = (fifo); \
390 typeof(*__tmp->const_type) __val = (val); \
391 unsigned int __ret; \
392 size_t __recsize = sizeof(*__tmp->rectype); \
393 struct __kfifo *__kfifo = &__tmp->kfifo; \
394 if (__recsize) \
395 __ret = __kfifo_in_r(__kfifo, &__val, sizeof(__val), \
396 __recsize); \
397 else { \
398 __ret = !kfifo_is_full(__tmp); \
399 if (__ret) { \
400 (__is_kfifo_ptr(__tmp) ? \
401 ((typeof(__tmp->type))__kfifo->data) : \
402 (__tmp->buf) \
403 )[__kfifo->in & __tmp->kfifo.mask] = \
404 (typeof(*__tmp->type))__val; \
405 smp_wmb(); \
406 __kfifo->in++; \
407 } \
408 } \
409 __ret; \
410 })
411
412 /**
413 * kfifo_get - get data from the fifo
414 * @fifo: address of the fifo to be used
415 * @val: address where to store the data
416 *
417 * This macro reads the data from the fifo.
418 * It returns 0 if the fifo was empty. Otherwise it returns the number
419 * processed elements.
420 *
421 * Note that with only one concurrent reader and one concurrent
422 * writer, you don't need extra locking to use these macro.
423 */
424 #define kfifo_get(fifo, val) \
425 __kfifo_uint_must_check_helper( \
426 ({ \
427 typeof((fifo) + 1) __tmp = (fifo); \
428 typeof(__tmp->ptr) __val = (val); \
429 unsigned int __ret; \
430 const size_t __recsize = sizeof(*__tmp->rectype); \
431 struct __kfifo *__kfifo = &__tmp->kfifo; \
432 if (__recsize) \
433 __ret = __kfifo_out_r(__kfifo, __val, sizeof(*__val), \
434 __recsize); \
435 else { \
436 __ret = !kfifo_is_empty(__tmp); \
437 if (__ret) { \
438 *(typeof(__tmp->type))__val = \
439 (__is_kfifo_ptr(__tmp) ? \
440 ((typeof(__tmp->type))__kfifo->data) : \
441 (__tmp->buf) \
442 )[__kfifo->out & __tmp->kfifo.mask]; \
443 smp_wmb(); \
444 __kfifo->out++; \
445 } \
446 } \
447 __ret; \
448 }) \
449 )
450
451 /**
452 * kfifo_peek - get data from the fifo without removing
453 * @fifo: address of the fifo to be used
454 * @val: address where to store the data
455 *
456 * This reads the data from the fifo without removing it from the fifo.
457 * It returns 0 if the fifo was empty. Otherwise it returns the number
458 * processed elements.
459 *
460 * Note that with only one concurrent reader and one concurrent
461 * writer, you don't need extra locking to use these macro.
462 */
463 #define kfifo_peek(fifo, val) \
464 __kfifo_uint_must_check_helper( \
465 ({ \
466 typeof((fifo) + 1) __tmp = (fifo); \
467 typeof(__tmp->ptr) __val = (val); \
468 unsigned int __ret; \
469 const size_t __recsize = sizeof(*__tmp->rectype); \
470 struct __kfifo *__kfifo = &__tmp->kfifo; \
471 if (__recsize) \
472 __ret = __kfifo_out_peek_r(__kfifo, __val, sizeof(*__val), \
473 __recsize); \
474 else { \
475 __ret = !kfifo_is_empty(__tmp); \
476 if (__ret) { \
477 *(typeof(__tmp->type))__val = \
478 (__is_kfifo_ptr(__tmp) ? \
479 ((typeof(__tmp->type))__kfifo->data) : \
480 (__tmp->buf) \
481 )[__kfifo->out & __tmp->kfifo.mask]; \
482 smp_wmb(); \
483 } \
484 } \
485 __ret; \
486 }) \
487 )
488
489 /**
490 * kfifo_in - put data into the fifo
491 * @fifo: address of the fifo to be used
492 * @buf: the data to be added
493 * @n: number of elements to be added
494 *
495 * This macro copies the given buffer into the fifo and returns the
496 * number of copied elements.
497 *
498 * Note that with only one concurrent reader and one concurrent
499 * writer, you don't need extra locking to use these macro.
500 */
501 #define kfifo_in(fifo, buf, n) \
502 ({ \
503 typeof((fifo) + 1) __tmp = (fifo); \
504 typeof(__tmp->ptr_const) __buf = (buf); \
505 unsigned long __n = (n); \
506 const size_t __recsize = sizeof(*__tmp->rectype); \
507 struct __kfifo *__kfifo = &__tmp->kfifo; \
508 (__recsize) ?\
509 __kfifo_in_r(__kfifo, __buf, __n, __recsize) : \
510 __kfifo_in(__kfifo, __buf, __n); \
511 })
512
513 /**
514 * kfifo_in_spinlocked - put data into the fifo using a spinlock for locking
515 * @fifo: address of the fifo to be used
516 * @buf: the data to be added
517 * @n: number of elements to be added
518 * @lock: pointer to the spinlock to use for locking
519 *
520 * This macro copies the given values buffer into the fifo and returns the
521 * number of copied elements.
522 */
523 #define kfifo_in_spinlocked(fifo, buf, n, lock) \
524 ({ \
525 unsigned long __flags; \
526 unsigned int __ret; \
527 spin_lock_irqsave(lock, __flags); \
528 __ret = kfifo_in(fifo, buf, n); \
529 spin_unlock_irqrestore(lock, __flags); \
530 __ret; \
531 })
532
533 /* alias for kfifo_in_spinlocked, will be removed in a future release */
534 #define kfifo_in_locked(fifo, buf, n, lock) \
535 kfifo_in_spinlocked(fifo, buf, n, lock)
536
537 /**
538 * kfifo_out - get data from the fifo
539 * @fifo: address of the fifo to be used
540 * @buf: pointer to the storage buffer
541 * @n: max. number of elements to get
542 *
543 * This macro get some data from the fifo and return the numbers of elements
544 * copied.
545 *
546 * Note that with only one concurrent reader and one concurrent
547 * writer, you don't need extra locking to use these macro.
548 */
549 #define kfifo_out(fifo, buf, n) \
550 __kfifo_uint_must_check_helper( \
551 ({ \
552 typeof((fifo) + 1) __tmp = (fifo); \
553 typeof(__tmp->ptr) __buf = (buf); \
554 unsigned long __n = (n); \
555 const size_t __recsize = sizeof(*__tmp->rectype); \
556 struct __kfifo *__kfifo = &__tmp->kfifo; \
557 (__recsize) ?\
558 __kfifo_out_r(__kfifo, __buf, __n, __recsize) : \
559 __kfifo_out(__kfifo, __buf, __n); \
560 }) \
561 )
562
563 /**
564 * kfifo_out_spinlocked - get data from the fifo using a spinlock for locking
565 * @fifo: address of the fifo to be used
566 * @buf: pointer to the storage buffer
567 * @n: max. number of elements to get
568 * @lock: pointer to the spinlock to use for locking
569 *
570 * This macro get the data from the fifo and return the numbers of elements
571 * copied.
572 */
573 #define kfifo_out_spinlocked(fifo, buf, n, lock) \
574 __kfifo_uint_must_check_helper( \
575 ({ \
576 unsigned long __flags; \
577 unsigned int __ret; \
578 spin_lock_irqsave(lock, __flags); \
579 __ret = kfifo_out(fifo, buf, n); \
580 spin_unlock_irqrestore(lock, __flags); \
581 __ret; \
582 }) \
583 )
584
585 /* alias for kfifo_out_spinlocked, will be removed in a future release */
586 #define kfifo_out_locked(fifo, buf, n, lock) \
587 kfifo_out_spinlocked(fifo, buf, n, lock)
588
589 /**
590 * kfifo_from_user - puts some data from user space into the fifo
591 * @fifo: address of the fifo to be used
592 * @from: pointer to the data to be added
593 * @len: the length of the data to be added
594 * @copied: pointer to output variable to store the number of copied bytes
595 *
596 * This macro copies at most @len bytes from the @from into the
597 * fifo, depending of the available space and returns -EFAULT/0.
598 *
599 * Note that with only one concurrent reader and one concurrent
600 * writer, you don't need extra locking to use these macro.
601 */
602 #define kfifo_from_user(fifo, from, len, copied) \
603 __kfifo_uint_must_check_helper( \
604 ({ \
605 typeof((fifo) + 1) __tmp = (fifo); \
606 const void __user *__from = (from); \
607 unsigned int __len = (len); \
608 unsigned int *__copied = (copied); \
609 const size_t __recsize = sizeof(*__tmp->rectype); \
610 struct __kfifo *__kfifo = &__tmp->kfifo; \
611 (__recsize) ? \
612 __kfifo_from_user_r(__kfifo, __from, __len, __copied, __recsize) : \
613 __kfifo_from_user(__kfifo, __from, __len, __copied); \
614 }) \
615 )
616
617 /**
618 * kfifo_to_user - copies data from the fifo into user space
619 * @fifo: address of the fifo to be used
620 * @to: where the data must be copied
621 * @len: the size of the destination buffer
622 * @copied: pointer to output variable to store the number of copied bytes
623 *
624 * This macro copies at most @len bytes from the fifo into the
625 * @to buffer and returns -EFAULT/0.
626 *
627 * Note that with only one concurrent reader and one concurrent
628 * writer, you don't need extra locking to use these macro.
629 */
630 #define kfifo_to_user(fifo, to, len, copied) \
631 __kfifo_uint_must_check_helper( \
632 ({ \
633 typeof((fifo) + 1) __tmp = (fifo); \
634 void __user *__to = (to); \
635 unsigned int __len = (len); \
636 unsigned int *__copied = (copied); \
637 const size_t __recsize = sizeof(*__tmp->rectype); \
638 struct __kfifo *__kfifo = &__tmp->kfifo; \
639 (__recsize) ? \
640 __kfifo_to_user_r(__kfifo, __to, __len, __copied, __recsize) : \
641 __kfifo_to_user(__kfifo, __to, __len, __copied); \
642 }) \
643 )
644
645 /**
646 * kfifo_dma_in_prepare - setup a scatterlist for DMA input
647 * @fifo: address of the fifo to be used
648 * @sgl: pointer to the scatterlist array
649 * @nents: number of entries in the scatterlist array
650 * @len: number of elements to transfer
651 *
652 * This macro fills a scatterlist for DMA input.
653 * It returns the number entries in the scatterlist array.
654 *
655 * Note that with only one concurrent reader and one concurrent
656 * writer, you don't need extra locking to use these macros.
657 */
658 #define kfifo_dma_in_prepare(fifo, sgl, nents, len) \
659 ({ \
660 typeof((fifo) + 1) __tmp = (fifo); \
661 struct scatterlist *__sgl = (sgl); \
662 int __nents = (nents); \
663 unsigned int __len = (len); \
664 const size_t __recsize = sizeof(*__tmp->rectype); \
665 struct __kfifo *__kfifo = &__tmp->kfifo; \
666 (__recsize) ? \
667 __kfifo_dma_in_prepare_r(__kfifo, __sgl, __nents, __len, __recsize) : \
668 __kfifo_dma_in_prepare(__kfifo, __sgl, __nents, __len); \
669 })
670
671 /**
672 * kfifo_dma_in_finish - finish a DMA IN operation
673 * @fifo: address of the fifo to be used
674 * @len: number of bytes to received
675 *
676 * This macro finish a DMA IN operation. The in counter will be updated by
677 * the len parameter. No error checking will be done.
678 *
679 * Note that with only one concurrent reader and one concurrent
680 * writer, you don't need extra locking to use these macros.
681 */
682 #define kfifo_dma_in_finish(fifo, len) \
683 (void)({ \
684 typeof((fifo) + 1) __tmp = (fifo); \
685 unsigned int __len = (len); \
686 const size_t __recsize = sizeof(*__tmp->rectype); \
687 struct __kfifo *__kfifo = &__tmp->kfifo; \
688 if (__recsize) \
689 __kfifo_dma_in_finish_r(__kfifo, __len, __recsize); \
690 else \
691 __kfifo->in += __len / sizeof(*__tmp->type); \
692 })
693
694 /**
695 * kfifo_dma_out_prepare - setup a scatterlist for DMA output
696 * @fifo: address of the fifo to be used
697 * @sgl: pointer to the scatterlist array
698 * @nents: number of entries in the scatterlist array
699 * @len: number of elements to transfer
700 *
701 * This macro fills a scatterlist for DMA output which at most @len bytes
702 * to transfer.
703 * It returns the number entries in the scatterlist array.
704 * A zero means there is no space available and the scatterlist is not filled.
705 *
706 * Note that with only one concurrent reader and one concurrent
707 * writer, you don't need extra locking to use these macros.
708 */
709 #define kfifo_dma_out_prepare(fifo, sgl, nents, len) \
710 ({ \
711 typeof((fifo) + 1) __tmp = (fifo); \
712 struct scatterlist *__sgl = (sgl); \
713 int __nents = (nents); \
714 unsigned int __len = (len); \
715 const size_t __recsize = sizeof(*__tmp->rectype); \
716 struct __kfifo *__kfifo = &__tmp->kfifo; \
717 (__recsize) ? \
718 __kfifo_dma_out_prepare_r(__kfifo, __sgl, __nents, __len, __recsize) : \
719 __kfifo_dma_out_prepare(__kfifo, __sgl, __nents, __len); \
720 })
721
722 /**
723 * kfifo_dma_out_finish - finish a DMA OUT operation
724 * @fifo: address of the fifo to be used
725 * @len: number of bytes transferred
726 *
727 * This macro finish a DMA OUT operation. The out counter will be updated by
728 * the len parameter. No error checking will be done.
729 *
730 * Note that with only one concurrent reader and one concurrent
731 * writer, you don't need extra locking to use these macros.
732 */
733 #define kfifo_dma_out_finish(fifo, len) \
734 (void)({ \
735 typeof((fifo) + 1) __tmp = (fifo); \
736 unsigned int __len = (len); \
737 const size_t __recsize = sizeof(*__tmp->rectype); \
738 struct __kfifo *__kfifo = &__tmp->kfifo; \
739 if (__recsize) \
740 __kfifo_dma_out_finish_r(__kfifo, __recsize); \
741 else \
742 __kfifo->out += __len / sizeof(*__tmp->type); \
743 })
744
745 /**
746 * kfifo_out_peek - gets some data from the fifo
747 * @fifo: address of the fifo to be used
748 * @buf: pointer to the storage buffer
749 * @n: max. number of elements to get
750 *
751 * This macro get the data from the fifo and return the numbers of elements
752 * copied. The data is not removed from the fifo.
753 *
754 * Note that with only one concurrent reader and one concurrent
755 * writer, you don't need extra locking to use these macro.
756 */
757 #define kfifo_out_peek(fifo, buf, n) \
758 __kfifo_uint_must_check_helper( \
759 ({ \
760 typeof((fifo) + 1) __tmp = (fifo); \
761 typeof(__tmp->ptr) __buf = (buf); \
762 unsigned long __n = (n); \
763 const size_t __recsize = sizeof(*__tmp->rectype); \
764 struct __kfifo *__kfifo = &__tmp->kfifo; \
765 (__recsize) ? \
766 __kfifo_out_peek_r(__kfifo, __buf, __n, __recsize) : \
767 __kfifo_out_peek(__kfifo, __buf, __n); \
768 }) \
769 )
770
771 extern int __kfifo_alloc(struct __kfifo *fifo, unsigned int size,
772 size_t esize, gfp_t gfp_mask);
773
774 extern void __kfifo_free(struct __kfifo *fifo);
775
776 extern int __kfifo_init(struct __kfifo *fifo, void *buffer,
777 unsigned int size, size_t esize);
778
779 extern unsigned int __kfifo_in(struct __kfifo *fifo,
780 const void *buf, unsigned int len);
781
782 extern unsigned int __kfifo_out(struct __kfifo *fifo,
783 void *buf, unsigned int len);
784
785 extern int __kfifo_from_user(struct __kfifo *fifo,
786 const void __user *from, unsigned long len, unsigned int *copied);
787
788 extern int __kfifo_to_user(struct __kfifo *fifo,
789 void __user *to, unsigned long len, unsigned int *copied);
790
791 extern unsigned int __kfifo_dma_in_prepare(struct __kfifo *fifo,
792 struct scatterlist *sgl, int nents, unsigned int len);
793
794 extern unsigned int __kfifo_dma_out_prepare(struct __kfifo *fifo,
795 struct scatterlist *sgl, int nents, unsigned int len);
796
797 extern unsigned int __kfifo_out_peek(struct __kfifo *fifo,
798 void *buf, unsigned int len);
799
800 extern unsigned int __kfifo_in_r(struct __kfifo *fifo,
801 const void *buf, unsigned int len, size_t recsize);
802
803 extern unsigned int __kfifo_out_r(struct __kfifo *fifo,
804 void *buf, unsigned int len, size_t recsize);
805
806 extern int __kfifo_from_user_r(struct __kfifo *fifo,
807 const void __user *from, unsigned long len, unsigned int *copied,
808 size_t recsize);
809
810 extern int __kfifo_to_user_r(struct __kfifo *fifo, void __user *to,
811 unsigned long len, unsigned int *copied, size_t recsize);
812
813 extern unsigned int __kfifo_dma_in_prepare_r(struct __kfifo *fifo,
814 struct scatterlist *sgl, int nents, unsigned int len, size_t recsize);
815
816 extern void __kfifo_dma_in_finish_r(struct __kfifo *fifo,
817 unsigned int len, size_t recsize);
818
819 extern unsigned int __kfifo_dma_out_prepare_r(struct __kfifo *fifo,
820 struct scatterlist *sgl, int nents, unsigned int len, size_t recsize);
821
822 extern void __kfifo_dma_out_finish_r(struct __kfifo *fifo, size_t recsize);
823
824 extern unsigned int __kfifo_len_r(struct __kfifo *fifo, size_t recsize);
825
826 extern void __kfifo_skip_r(struct __kfifo *fifo, size_t recsize);
827
828 extern unsigned int __kfifo_out_peek_r(struct __kfifo *fifo,
829 void *buf, unsigned int len, size_t recsize);
830
831 extern unsigned int __kfifo_max_r(unsigned int len, size_t recsize);
832
833 #endif 1 /*
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
4 * (C) SGI 2006, Christoph Lameter
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
7 * (C) Linux Foundation 2008-2013
8 * Unified interface for all slab allocators
9 */
10
11 #ifndef _LINUX_SLAB_H
12 #define _LINUX_SLAB_H
13
14 #include <linux/gfp.h>
15 #include <linux/types.h>
16 #include <linux/workqueue.h>
17
18
19 /*
20 * Flags to pass to kmem_cache_create().
21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
22 */
23 #define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
24 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
25 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
26 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
27 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
28 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
29 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
30 /*
31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
32 *
33 * This delays freeing the SLAB page by a grace period, it does _NOT_
34 * delay object freeing. This means that if you do kmem_cache_free()
35 * that memory location is free to be reused at any time. Thus it may
36 * be possible to see another object there in the same RCU grace period.
37 *
38 * This feature only ensures the memory location backing the object
39 * stays valid, the trick to using this is relying on an independent
40 * object validation pass. Something like:
41 *
42 * rcu_read_lock()
43 * again:
44 * obj = lockless_lookup(key);
45 * if (obj) {
46 * if (!try_get_ref(obj)) // might fail for free objects
47 * goto again;
48 *
49 * if (obj->key != key) { // not the object we expected
50 * put_ref(obj);
51 * goto again;
52 * }
53 * }
54 * rcu_read_unlock();
55 *
56 * This is useful if we need to approach a kernel structure obliquely,
57 * from its address obtained without the usual locking. We can lock
58 * the structure to stabilize it and check it's still at the given address,
59 * only if we can be sure that the memory has not been meanwhile reused
60 * for some other kind of object (which our subsystem's lock might corrupt).
61 *
62 * rcu_read_lock before reading the address, then rcu_read_unlock after
63 * taking the spinlock within the structure expected at that address.
64 */
65 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
66 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
67 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
68
69 /* Flag to prevent checks on free */
70 #ifdef CONFIG_DEBUG_OBJECTS
71 # define SLAB_DEBUG_OBJECTS 0x00400000UL
72 #else
73 # define SLAB_DEBUG_OBJECTS 0x00000000UL
74 #endif
75
76 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
77
78 /* Don't track use of uninitialized memory */
79 #ifdef CONFIG_KMEMCHECK
80 # define SLAB_NOTRACK 0x01000000UL
81 #else
82 # define SLAB_NOTRACK 0x00000000UL
83 #endif
84 #ifdef CONFIG_FAILSLAB
85 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
86 #else
87 # define SLAB_FAILSLAB 0x00000000UL
88 #endif
89
90 /* The following flags affect the page allocator grouping pages by mobility */
91 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
92 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
93 /*
94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
95 *
96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
97 *
98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
99 * Both make kfree a no-op.
100 */
101 #define ZERO_SIZE_PTR ((void *)16)
102
103 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
104 (unsigned long)ZERO_SIZE_PTR)
105
106 #include <linux/kmemleak.h>
107 #include <linux/kasan.h>
108
109 struct mem_cgroup;
110 /*
111 * struct kmem_cache related prototypes
112 */
113 void __init kmem_cache_init(void);
114 int slab_is_available(void);
115
116 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
117 unsigned long,
118 void (*)(void *));
119 void kmem_cache_destroy(struct kmem_cache *);
120 int kmem_cache_shrink(struct kmem_cache *);
121
122 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
123 void memcg_deactivate_kmem_caches(struct mem_cgroup *);
124 void memcg_destroy_kmem_caches(struct mem_cgroup *);
125
126 /*
127 * Please use this macro to create slab caches. Simply specify the
128 * name of the structure and maybe some flags that are listed above.
129 *
130 * The alignment of the struct determines object alignment. If you
131 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
132 * then the objects will be properly aligned in SMP configurations.
133 */
134 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
135 sizeof(struct __struct), __alignof__(struct __struct),\
136 (__flags), NULL)
137
138 /*
139 * Common kmalloc functions provided by all allocators
140 */
141 void * __must_check __krealloc(const void *, size_t, gfp_t);
142 void * __must_check krealloc(const void *, size_t, gfp_t);
143 void kfree(const void *);
144 void kzfree(const void *);
145 size_t ksize(const void *);
146
147 /*
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 * alignment larger than the alignment of a 64-bit integer.
150 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
151 */
152 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
153 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
154 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
155 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
156 #else
157 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #endif
159
160 /*
161 * Kmalloc array related definitions
162 */
163
164 #ifdef CONFIG_SLAB
165 /*
166 * The largest kmalloc size supported by the SLAB allocators is
167 * 32 megabyte (2^25) or the maximum allocatable page order if that is
168 * less than 32 MB.
169 *
170 * WARNING: Its not easy to increase this value since the allocators have
171 * to do various tricks to work around compiler limitations in order to
172 * ensure proper constant folding.
173 */
174 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
175 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
176 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
177 #ifndef KMALLOC_SHIFT_LOW
178 #define KMALLOC_SHIFT_LOW 5
179 #endif
180 #endif
181
182 #ifdef CONFIG_SLUB
183 /*
184 * SLUB directly allocates requests fitting in to an order-1 page
185 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
186 */
187 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
188 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT)
189 #ifndef KMALLOC_SHIFT_LOW
190 #define KMALLOC_SHIFT_LOW 3
191 #endif
192 #endif
193
194 #ifdef CONFIG_SLOB
195 /*
196 * SLOB passes all requests larger than one page to the page allocator.
197 * No kmalloc array is necessary since objects of different sizes can
198 * be allocated from the same page.
199 */
200 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT
201 #define KMALLOC_SHIFT_MAX 30
202 #ifndef KMALLOC_SHIFT_LOW
203 #define KMALLOC_SHIFT_LOW 3
204 #endif
205 #endif
206
207 /* Maximum allocatable size */
208 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
209 /* Maximum size for which we actually use a slab cache */
210 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
211 /* Maximum order allocatable via the slab allocagtor */
212 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
213
214 /*
215 * Kmalloc subsystem.
216 */
217 #ifndef KMALLOC_MIN_SIZE
218 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
219 #endif
220
221 /*
222 * This restriction comes from byte sized index implementation.
223 * Page size is normally 2^12 bytes and, in this case, if we want to use
224 * byte sized index which can represent 2^8 entries, the size of the object
225 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
226 * If minimum size of kmalloc is less than 16, we use it as minimum object
227 * size and give up to use byte sized index.
228 */
229 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
230 (KMALLOC_MIN_SIZE) : 16)
231
232 #ifndef CONFIG_SLOB
233 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
234 #ifdef CONFIG_ZONE_DMA
235 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
236 #endif
237
238 /*
239 * Figure out which kmalloc slab an allocation of a certain size
240 * belongs to.
241 * 0 = zero alloc
242 * 1 = 65 .. 96 bytes
243 * 2 = 129 .. 192 bytes
244 * n = 2^(n-1)+1 .. 2^n
245 */
246 static __always_inline int kmalloc_index(size_t size)
247 {
248 if (!size)
249 return 0;
250
251 if (size <= KMALLOC_MIN_SIZE)
252 return KMALLOC_SHIFT_LOW;
253
254 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
255 return 1;
256 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
257 return 2;
258 if (size <= 8) return 3;
259 if (size <= 16) return 4;
260 if (size <= 32) return 5;
261 if (size <= 64) return 6;
262 if (size <= 128) return 7;
263 if (size <= 256) return 8;
264 if (size <= 512) return 9;
265 if (size <= 1024) return 10;
266 if (size <= 2 * 1024) return 11;
267 if (size <= 4 * 1024) return 12;
268 if (size <= 8 * 1024) return 13;
269 if (size <= 16 * 1024) return 14;
270 if (size <= 32 * 1024) return 15;
271 if (size <= 64 * 1024) return 16;
272 if (size <= 128 * 1024) return 17;
273 if (size <= 256 * 1024) return 18;
274 if (size <= 512 * 1024) return 19;
275 if (size <= 1024 * 1024) return 20;
276 if (size <= 2 * 1024 * 1024) return 21;
277 if (size <= 4 * 1024 * 1024) return 22;
278 if (size <= 8 * 1024 * 1024) return 23;
279 if (size <= 16 * 1024 * 1024) return 24;
280 if (size <= 32 * 1024 * 1024) return 25;
281 if (size <= 64 * 1024 * 1024) return 26;
282 BUG();
283
284 /* Will never be reached. Needed because the compiler may complain */
285 return -1;
286 }
287 #endif /* !CONFIG_SLOB */
288
289 void *__kmalloc(size_t size, gfp_t flags);
290 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags);
291 void kmem_cache_free(struct kmem_cache *, void *);
292
293 /*
294 * Bulk allocation and freeing operations. These are accellerated in an
295 * allocator specific way to avoid taking locks repeatedly or building
296 * metadata structures unnecessarily.
297 *
298 * Note that interrupts must be enabled when calling these functions.
299 */
300 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
301 bool kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
302
303 #ifdef CONFIG_NUMA
304 void *__kmalloc_node(size_t size, gfp_t flags, int node);
305 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
306 #else
307 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
308 {
309 return __kmalloc(size, flags);
310 }
311
312 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
313 {
314 return kmem_cache_alloc(s, flags);
315 }
316 #endif
317
318 #ifdef CONFIG_TRACING
319 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t);
320
321 #ifdef CONFIG_NUMA
322 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
323 gfp_t gfpflags,
324 int node, size_t size);
325 #else
326 static __always_inline void *
327 kmem_cache_alloc_node_trace(struct kmem_cache *s,
328 gfp_t gfpflags,
329 int node, size_t size)
330 {
331 return kmem_cache_alloc_trace(s, gfpflags, size);
332 }
333 #endif /* CONFIG_NUMA */
334
335 #else /* CONFIG_TRACING */
336 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
337 gfp_t flags, size_t size)
338 {
339 void *ret = kmem_cache_alloc(s, flags);
340
341 kasan_kmalloc(s, ret, size);
342 return ret;
343 }
344
345 static __always_inline void *
346 kmem_cache_alloc_node_trace(struct kmem_cache *s,
347 gfp_t gfpflags,
348 int node, size_t size)
349 {
350 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
351
352 kasan_kmalloc(s, ret, size);
353 return ret;
354 }
355 #endif /* CONFIG_TRACING */
356
357 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order);
358
359 #ifdef CONFIG_TRACING
360 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
361 #else
362 static __always_inline void *
363 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
364 {
365 return kmalloc_order(size, flags, order);
366 }
367 #endif
368
369 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
370 {
371 unsigned int order = get_order(size);
372 return kmalloc_order_trace(size, flags, order);
373 }
374
375 /**
376 * kmalloc - allocate memory
377 * @size: how many bytes of memory are required.
378 * @flags: the type of memory to allocate.
379 *
380 * kmalloc is the normal method of allocating memory
381 * for objects smaller than page size in the kernel.
382 *
383 * The @flags argument may be one of:
384 *
385 * %GFP_USER - Allocate memory on behalf of user. May sleep.
386 *
387 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
388 *
389 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
390 * For example, use this inside interrupt handlers.
391 *
392 * %GFP_HIGHUSER - Allocate pages from high memory.
393 *
394 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
395 *
396 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
397 *
398 * %GFP_NOWAIT - Allocation will not sleep.
399 *
400 * %__GFP_THISNODE - Allocate node-local memory only.
401 *
402 * %GFP_DMA - Allocation suitable for DMA.
403 * Should only be used for kmalloc() caches. Otherwise, use a
404 * slab created with SLAB_DMA.
405 *
406 * Also it is possible to set different flags by OR'ing
407 * in one or more of the following additional @flags:
408 *
409 * %__GFP_COLD - Request cache-cold pages instead of
410 * trying to return cache-warm pages.
411 *
412 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
413 *
414 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
415 * (think twice before using).
416 *
417 * %__GFP_NORETRY - If memory is not immediately available,
418 * then give up at once.
419 *
420 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
421 *
422 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
423 *
424 * There are other flags available as well, but these are not intended
425 * for general use, and so are not documented here. For a full list of
426 * potential flags, always refer to linux/gfp.h.
427 */
428 static __always_inline void *kmalloc(size_t size, gfp_t flags)
429 {
430 if (__builtin_constant_p(size)) {
431 if (size > KMALLOC_MAX_CACHE_SIZE)
432 return kmalloc_large(size, flags);
433 #ifndef CONFIG_SLOB
434 if (!(flags & GFP_DMA)) {
435 int index = kmalloc_index(size);
436
437 if (!index)
438 return ZERO_SIZE_PTR;
439
440 return kmem_cache_alloc_trace(kmalloc_caches[index],
441 flags, size);
442 }
443 #endif
444 }
445 return __kmalloc(size, flags);
446 }
447
448 /*
449 * Determine size used for the nth kmalloc cache.
450 * return size or 0 if a kmalloc cache for that
451 * size does not exist
452 */
453 static __always_inline int kmalloc_size(int n)
454 {
455 #ifndef CONFIG_SLOB
456 if (n > 2)
457 return 1 << n;
458
459 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
460 return 96;
461
462 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
463 return 192;
464 #endif
465 return 0;
466 }
467
468 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
469 {
470 #ifndef CONFIG_SLOB
471 if (__builtin_constant_p(size) &&
472 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
473 int i = kmalloc_index(size);
474
475 if (!i)
476 return ZERO_SIZE_PTR;
477
478 return kmem_cache_alloc_node_trace(kmalloc_caches[i],
479 flags, node, size);
480 }
481 #endif
482 return __kmalloc_node(size, flags, node);
483 }
484
485 /*
486 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
487 * Intended for arches that get misalignment faults even for 64 bit integer
488 * aligned buffers.
489 */
490 #ifndef ARCH_SLAB_MINALIGN
491 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
492 #endif
493
494 struct memcg_cache_array {
495 struct rcu_head rcu;
496 struct kmem_cache *entries[0];
497 };
498
499 /*
500 * This is the main placeholder for memcg-related information in kmem caches.
501 * Both the root cache and the child caches will have it. For the root cache,
502 * this will hold a dynamically allocated array large enough to hold
503 * information about the currently limited memcgs in the system. To allow the
504 * array to be accessed without taking any locks, on relocation we free the old
505 * version only after a grace period.
506 *
507 * Child caches will hold extra metadata needed for its operation. Fields are:
508 *
509 * @memcg: pointer to the memcg this cache belongs to
510 * @root_cache: pointer to the global, root cache, this cache was derived from
511 *
512 * Both root and child caches of the same kind are linked into a list chained
513 * through @list.
514 */
515 struct memcg_cache_params {
516 bool is_root_cache;
517 struct list_head list;
518 union {
519 struct memcg_cache_array __rcu *memcg_caches;
520 struct {
521 struct mem_cgroup *memcg;
522 struct kmem_cache *root_cache;
523 };
524 };
525 };
526
527 int memcg_update_all_caches(int num_memcgs);
528
529 /**
530 * kmalloc_array - allocate memory for an array.
531 * @n: number of elements.
532 * @size: element size.
533 * @flags: the type of memory to allocate (see kmalloc).
534 */
535 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
536 {
537 if (size != 0 && n > SIZE_MAX / size)
538 return NULL;
539 return __kmalloc(n * size, flags);
540 }
541
542 /**
543 * kcalloc - allocate memory for an array. The memory is set to zero.
544 * @n: number of elements.
545 * @size: element size.
546 * @flags: the type of memory to allocate (see kmalloc).
547 */
548 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
549 {
550 return kmalloc_array(n, size, flags | __GFP_ZERO);
551 }
552
553 /*
554 * kmalloc_track_caller is a special version of kmalloc that records the
555 * calling function of the routine calling it for slab leak tracking instead
556 * of just the calling function (confusing, eh?).
557 * It's useful when the call to kmalloc comes from a widely-used standard
558 * allocator where we care about the real place the memory allocation
559 * request comes from.
560 */
561 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
562 #define kmalloc_track_caller(size, flags) \
563 __kmalloc_track_caller(size, flags, _RET_IP_)
564
565 #ifdef CONFIG_NUMA
566 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
567 #define kmalloc_node_track_caller(size, flags, node) \
568 __kmalloc_node_track_caller(size, flags, node, \
569 _RET_IP_)
570
571 #else /* CONFIG_NUMA */
572
573 #define kmalloc_node_track_caller(size, flags, node) \
574 kmalloc_track_caller(size, flags)
575
576 #endif /* CONFIG_NUMA */
577
578 /*
579 * Shortcuts
580 */
581 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
582 {
583 return kmem_cache_alloc(k, flags | __GFP_ZERO);
584 }
585
586 /**
587 * kzalloc - allocate memory. The memory is set to zero.
588 * @size: how many bytes of memory are required.
589 * @flags: the type of memory to allocate (see kmalloc).
590 */
591 static inline void *kzalloc(size_t size, gfp_t flags)
592 {
593 return kmalloc(size, flags | __GFP_ZERO);
594 }
595
596 /**
597 * kzalloc_node - allocate zeroed memory from a particular memory node.
598 * @size: how many bytes of memory are required.
599 * @flags: the type of memory to allocate (see kmalloc).
600 * @node: memory node from which to allocate
601 */
602 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
603 {
604 return kmalloc_node(size, flags | __GFP_ZERO, node);
605 }
606
607 unsigned int kmem_cache_size(struct kmem_cache *s);
608 void __init kmem_cache_init_late(void);
609
610 #endif /* _LINUX_SLAB_H */ 1 #ifndef __LINUX_SPINLOCK_H
2 #define __LINUX_SPINLOCK_H
3
4 /*
5 * include/linux/spinlock.h - generic spinlock/rwlock declarations
6 *
7 * here's the role of the various spinlock/rwlock related include files:
8 *
9 * on SMP builds:
10 *
11 * asm/spinlock_types.h: contains the arch_spinlock_t/arch_rwlock_t and the
12 * initializers
13 *
14 * linux/spinlock_types.h:
15 * defines the generic type and initializers
16 *
17 * asm/spinlock.h: contains the arch_spin_*()/etc. lowlevel
18 * implementations, mostly inline assembly code
19 *
20 * (also included on UP-debug builds:)
21 *
22 * linux/spinlock_api_smp.h:
23 * contains the prototypes for the _spin_*() APIs.
24 *
25 * linux/spinlock.h: builds the final spin_*() APIs.
26 *
27 * on UP builds:
28 *
29 * linux/spinlock_type_up.h:
30 * contains the generic, simplified UP spinlock type.
31 * (which is an empty structure on non-debug builds)
32 *
33 * linux/spinlock_types.h:
34 * defines the generic type and initializers
35 *
36 * linux/spinlock_up.h:
37 * contains the arch_spin_*()/etc. version of UP
38 * builds. (which are NOPs on non-debug, non-preempt
39 * builds)
40 *
41 * (included on UP-non-debug builds:)
42 *
43 * linux/spinlock_api_up.h:
44 * builds the _spin_*() APIs.
45 *
46 * linux/spinlock.h: builds the final spin_*() APIs.
47 */
48
49 #include <linux/typecheck.h>
50 #include <linux/preempt.h>
51 #include <linux/linkage.h>
52 #include <linux/compiler.h>
53 #include <linux/irqflags.h>
54 #include <linux/thread_info.h>
55 #include <linux/kernel.h>
56 #include <linux/stringify.h>
57 #include <linux/bottom_half.h>
58 #include <asm/barrier.h>
59
60
61 /*
62 * Must define these before including other files, inline functions need them
63 */
64 #define LOCK_SECTION_NAME ".text..lock."KBUILD_BASENAME
65
66 #define LOCK_SECTION_START(extra) \
67 ".subsection 1\n\t" \
68 extra \
69 ".ifndef " LOCK_SECTION_NAME "\n\t" \
70 LOCK_SECTION_NAME ":\n\t" \
71 ".endif\n"
72
73 #define LOCK_SECTION_END \
74 ".previous\n\t"
75
76 #define __lockfunc __attribute__((section(".spinlock.text")))
77
78 /*
79 * Pull the arch_spinlock_t and arch_rwlock_t definitions:
80 */
81 #include <linux/spinlock_types.h>
82
83 /*
84 * Pull the arch_spin*() functions/declarations (UP-nondebug doesn't need them):
85 */
86 #ifdef CONFIG_SMP
87 # include <asm/spinlock.h>
88 #else
89 # include <linux/spinlock_up.h>
90 #endif
91
92 #ifdef CONFIG_DEBUG_SPINLOCK
93 extern void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name,
94 struct lock_class_key *key);
95 # define raw_spin_lock_init(lock) \
96 do { \
97 static struct lock_class_key __key; \
98 \
99 __raw_spin_lock_init((lock), #lock, &__key); \
100 } while (0)
101
102 #else
103 # define raw_spin_lock_init(lock) \
104 do { *(lock) = __RAW_SPIN_LOCK_UNLOCKED(lock); } while (0)
105 #endif
106
107 #define raw_spin_is_locked(lock) arch_spin_is_locked(&(lock)->raw_lock)
108
109 #ifdef CONFIG_GENERIC_LOCKBREAK
110 #define raw_spin_is_contended(lock) ((lock)->break_lock)
111 #else
112
113 #ifdef arch_spin_is_contended
114 #define raw_spin_is_contended(lock) arch_spin_is_contended(&(lock)->raw_lock)
115 #else
116 #define raw_spin_is_contended(lock) (((void)(lock), 0))
117 #endif /*arch_spin_is_contended*/
118 #endif
119
120 /*
121 * Despite its name it doesn't necessarily has to be a full barrier.
122 * It should only guarantee that a STORE before the critical section
123 * can not be reordered with LOADs and STOREs inside this section.
124 * spin_lock() is the one-way barrier, this LOAD can not escape out
125 * of the region. So the default implementation simply ensures that
126 * a STORE can not move into the critical section, smp_wmb() should
127 * serialize it with another STORE done by spin_lock().
128 */
129 #ifndef smp_mb__before_spinlock
130 #define smp_mb__before_spinlock() smp_wmb()
131 #endif
132
133 /**
134 * raw_spin_unlock_wait - wait until the spinlock gets unlocked
135 * @lock: the spinlock in question.
136 */
137 #define raw_spin_unlock_wait(lock) arch_spin_unlock_wait(&(lock)->raw_lock)
138
139 #ifdef CONFIG_DEBUG_SPINLOCK
140 extern void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock);
141 #define do_raw_spin_lock_flags(lock, flags) do_raw_spin_lock(lock)
142 extern int do_raw_spin_trylock(raw_spinlock_t *lock);
143 extern void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock);
144 #else
145 static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock)
146 {
147 __acquire(lock);
148 arch_spin_lock(&lock->raw_lock);
149 }
150
151 static inline void
152 do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock)
153 {
154 __acquire(lock);
155 arch_spin_lock_flags(&lock->raw_lock, *flags);
156 }
157
158 static inline int do_raw_spin_trylock(raw_spinlock_t *lock)
159 {
160 return arch_spin_trylock(&(lock)->raw_lock);
161 }
162
163 static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock)
164 {
165 arch_spin_unlock(&lock->raw_lock);
166 __release(lock);
167 }
168 #endif
169
170 /*
171 * Define the various spin_lock methods. Note we define these
172 * regardless of whether CONFIG_SMP or CONFIG_PREEMPT are set. The
173 * various methods are defined as nops in the case they are not
174 * required.
175 */
176 #define raw_spin_trylock(lock) __cond_lock(lock, _raw_spin_trylock(lock))
177
178 #define raw_spin_lock(lock) _raw_spin_lock(lock)
179
180 #ifdef CONFIG_DEBUG_LOCK_ALLOC
181 # define raw_spin_lock_nested(lock, subclass) \
182 _raw_spin_lock_nested(lock, subclass)
183 # define raw_spin_lock_bh_nested(lock, subclass) \
184 _raw_spin_lock_bh_nested(lock, subclass)
185
186 # define raw_spin_lock_nest_lock(lock, nest_lock) \
187 do { \
188 typecheck(struct lockdep_map *, &(nest_lock)->dep_map);\
189 _raw_spin_lock_nest_lock(lock, &(nest_lock)->dep_map); \
190 } while (0)
191 #else
192 /*
193 * Always evaluate the 'subclass' argument to avoid that the compiler
194 * warns about set-but-not-used variables when building with
195 * CONFIG_DEBUG_LOCK_ALLOC=n and with W=1.
196 */
197 # define raw_spin_lock_nested(lock, subclass) \
198 _raw_spin_lock(((void)(subclass), (lock)))
199 # define raw_spin_lock_nest_lock(lock, nest_lock) _raw_spin_lock(lock)
200 # define raw_spin_lock_bh_nested(lock, subclass) _raw_spin_lock_bh(lock)
201 #endif
202
203 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
204
205 #define raw_spin_lock_irqsave(lock, flags) \
206 do { \
207 typecheck(unsigned long, flags); \
208 flags = _raw_spin_lock_irqsave(lock); \
209 } while (0)
210
211 #ifdef CONFIG_DEBUG_LOCK_ALLOC
212 #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \
213 do { \
214 typecheck(unsigned long, flags); \
215 flags = _raw_spin_lock_irqsave_nested(lock, subclass); \
216 } while (0)
217 #else
218 #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \
219 do { \
220 typecheck(unsigned long, flags); \
221 flags = _raw_spin_lock_irqsave(lock); \
222 } while (0)
223 #endif
224
225 #else
226
227 #define raw_spin_lock_irqsave(lock, flags) \
228 do { \
229 typecheck(unsigned long, flags); \
230 _raw_spin_lock_irqsave(lock, flags); \
231 } while (0)
232
233 #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \
234 raw_spin_lock_irqsave(lock, flags)
235
236 #endif
237
238 #define raw_spin_lock_irq(lock) _raw_spin_lock_irq(lock)
239 #define raw_spin_lock_bh(lock) _raw_spin_lock_bh(lock)
240 #define raw_spin_unlock(lock) _raw_spin_unlock(lock)
241 #define raw_spin_unlock_irq(lock) _raw_spin_unlock_irq(lock)
242
243 #define raw_spin_unlock_irqrestore(lock, flags) \
244 do { \
245 typecheck(unsigned long, flags); \
246 _raw_spin_unlock_irqrestore(lock, flags); \
247 } while (0)
248 #define raw_spin_unlock_bh(lock) _raw_spin_unlock_bh(lock)
249
250 #define raw_spin_trylock_bh(lock) \
251 __cond_lock(lock, _raw_spin_trylock_bh(lock))
252
253 #define raw_spin_trylock_irq(lock) \
254 ({ \
255 local_irq_disable(); \
256 raw_spin_trylock(lock) ? \
257 1 : ({ local_irq_enable(); 0; }); \
258 })
259
260 #define raw_spin_trylock_irqsave(lock, flags) \
261 ({ \
262 local_irq_save(flags); \
263 raw_spin_trylock(lock) ? \
264 1 : ({ local_irq_restore(flags); 0; }); \
265 })
266
267 /**
268 * raw_spin_can_lock - would raw_spin_trylock() succeed?
269 * @lock: the spinlock in question.
270 */
271 #define raw_spin_can_lock(lock) (!raw_spin_is_locked(lock))
272
273 /* Include rwlock functions */
274 #include <linux/rwlock.h>
275
276 /*
277 * Pull the _spin_*()/_read_*()/_write_*() functions/declarations:
278 */
279 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
280 # include <linux/spinlock_api_smp.h>
281 #else
282 # include <linux/spinlock_api_up.h>
283 #endif
284
285 /*
286 * Map the spin_lock functions to the raw variants for PREEMPT_RT=n
287 */
288
289 static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock)
290 {
291 return &lock->rlock;
292 }
293
294 #define spin_lock_init(_lock) \
295 do { \
296 spinlock_check(_lock); \
297 raw_spin_lock_init(&(_lock)->rlock); \
298 } while (0)
299
300 static __always_inline void spin_lock(spinlock_t *lock)
301 {
302 raw_spin_lock(&lock->rlock);
303 }
304
305 static __always_inline void spin_lock_bh(spinlock_t *lock)
306 {
307 raw_spin_lock_bh(&lock->rlock);
308 }
309
310 static __always_inline int spin_trylock(spinlock_t *lock)
311 {
312 return raw_spin_trylock(&lock->rlock);
313 }
314
315 #define spin_lock_nested(lock, subclass) \
316 do { \
317 raw_spin_lock_nested(spinlock_check(lock), subclass); \
318 } while (0)
319
320 #define spin_lock_bh_nested(lock, subclass) \
321 do { \
322 raw_spin_lock_bh_nested(spinlock_check(lock), subclass);\
323 } while (0)
324
325 #define spin_lock_nest_lock(lock, nest_lock) \
326 do { \
327 raw_spin_lock_nest_lock(spinlock_check(lock), nest_lock); \
328 } while (0)
329
330 static __always_inline void spin_lock_irq(spinlock_t *lock)
331 {
332 raw_spin_lock_irq(&lock->rlock);
333 }
334
335 #define spin_lock_irqsave(lock, flags) \
336 do { \
337 raw_spin_lock_irqsave(spinlock_check(lock), flags); \
338 } while (0)
339
340 #define spin_lock_irqsave_nested(lock, flags, subclass) \
341 do { \
342 raw_spin_lock_irqsave_nested(spinlock_check(lock), flags, subclass); \
343 } while (0)
344
345 static __always_inline void spin_unlock(spinlock_t *lock)
346 {
347 raw_spin_unlock(&lock->rlock);
348 }
349
350 static __always_inline void spin_unlock_bh(spinlock_t *lock)
351 {
352 raw_spin_unlock_bh(&lock->rlock);
353 }
354
355 static __always_inline void spin_unlock_irq(spinlock_t *lock)
356 {
357 raw_spin_unlock_irq(&lock->rlock);
358 }
359
360 static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)
361 {
362 raw_spin_unlock_irqrestore(&lock->rlock, flags);
363 }
364
365 static __always_inline int spin_trylock_bh(spinlock_t *lock)
366 {
367 return raw_spin_trylock_bh(&lock->rlock);
368 }
369
370 static __always_inline int spin_trylock_irq(spinlock_t *lock)
371 {
372 return raw_spin_trylock_irq(&lock->rlock);
373 }
374
375 #define spin_trylock_irqsave(lock, flags) \
376 ({ \
377 raw_spin_trylock_irqsave(spinlock_check(lock), flags); \
378 })
379
380 static __always_inline void spin_unlock_wait(spinlock_t *lock)
381 {
382 raw_spin_unlock_wait(&lock->rlock);
383 }
384
385 static __always_inline int spin_is_locked(spinlock_t *lock)
386 {
387 return raw_spin_is_locked(&lock->rlock);
388 }
389
390 static __always_inline int spin_is_contended(spinlock_t *lock)
391 {
392 return raw_spin_is_contended(&lock->rlock);
393 }
394
395 static __always_inline int spin_can_lock(spinlock_t *lock)
396 {
397 return raw_spin_can_lock(&lock->rlock);
398 }
399
400 #define assert_spin_locked(lock) assert_raw_spin_locked(&(lock)->rlock)
401
402 /*
403 * Pull the atomic_t declaration:
404 * (asm-mips/atomic.h needs above definitions)
405 */
406 #include <linux/atomic.h>
407 /**
408 * atomic_dec_and_lock - lock on reaching reference count zero
409 * @atomic: the atomic counter
410 * @lock: the spinlock in question
411 *
412 * Decrements @atomic by 1. If the result is 0, returns true and locks
413 * @lock. Returns false for all other cases.
414 */
415 extern int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock);
416 #define atomic_dec_and_lock(atomic, lock) \
417 __cond_lock(lock, _atomic_dec_and_lock(atomic, lock))
418
419 #endif /* __LINUX_SPINLOCK_H */ 1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 * @streams: number of USB-3 streams allocated on the endpoint
61 *
62 * USB requests are always queued to a given endpoint, identified by a
63 * descriptor within an active interface in a given USB configuration.
64 */
65 struct usb_host_endpoint {
66 struct usb_endpoint_descriptor desc;
67 struct usb_ss_ep_comp_descriptor ss_ep_comp;
68 struct list_head urb_list;
69 void *hcpriv;
70 struct ep_device *ep_dev; /* For sysfs info */
71
72 unsigned char *extra; /* Extra descriptors */
73 int extralen;
74 int enabled;
75 int streams;
76 };
77
78 /* host-side wrapper for one interface setting's parsed descriptors */
79 struct usb_host_interface {
80 struct usb_interface_descriptor desc;
81
82 int extralen;
83 unsigned char *extra; /* Extra descriptors */
84
85 /* array of desc.bNumEndpoints endpoints associated with this
86 * interface setting. these will be in no particular order.
87 */
88 struct usb_host_endpoint *endpoint;
89
90 char *string; /* iInterface string, if present */
91 };
92
93 enum usb_interface_condition {
94 USB_INTERFACE_UNBOUND = 0,
95 USB_INTERFACE_BINDING,
96 USB_INTERFACE_BOUND,
97 USB_INTERFACE_UNBINDING,
98 };
99
100 /**
101 * struct usb_interface - what usb device drivers talk to
102 * @altsetting: array of interface structures, one for each alternate
103 * setting that may be selected. Each one includes a set of
104 * endpoint configurations. They will be in no particular order.
105 * @cur_altsetting: the current altsetting.
106 * @num_altsetting: number of altsettings defined.
107 * @intf_assoc: interface association descriptor
108 * @minor: the minor number assigned to this interface, if this
109 * interface is bound to a driver that uses the USB major number.
110 * If this interface does not use the USB major, this field should
111 * be unused. The driver should set this value in the probe()
112 * function of the driver, after it has been assigned a minor
113 * number from the USB core by calling usb_register_dev().
114 * @condition: binding state of the interface: not bound, binding
115 * (in probe()), bound to a driver, or unbinding (in disconnect())
116 * @sysfs_files_created: sysfs attributes exist
117 * @ep_devs_created: endpoint child pseudo-devices exist
118 * @unregistering: flag set when the interface is being unregistered
119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120 * capability during autosuspend.
121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122 * has been deferred.
123 * @needs_binding: flag set when the driver should be re-probed or unbound
124 * following a reset or suspend operation it doesn't support.
125 * @dev: driver model's view of this device
126 * @usb_dev: if an interface is bound to the USB major, this will point
127 * to the sysfs representation for that device.
128 * @pm_usage_cnt: PM usage counter for this interface
129 * @reset_ws: Used for scheduling resets from atomic context.
130 * @resetting_device: USB core reset the device, so use alt setting 0 as
131 * current; needs bandwidth alloc after reset.
132 *
133 * USB device drivers attach to interfaces on a physical device. Each
134 * interface encapsulates a single high level function, such as feeding
135 * an audio stream to a speaker or reporting a change in a volume control.
136 * Many USB devices only have one interface. The protocol used to talk to
137 * an interface's endpoints can be defined in a usb "class" specification,
138 * or by a product's vendor. The (default) control endpoint is part of
139 * every interface, but is never listed among the interface's descriptors.
140 *
141 * The driver that is bound to the interface can use standard driver model
142 * calls such as dev_get_drvdata() on the dev member of this structure.
143 *
144 * Each interface may have alternate settings. The initial configuration
145 * of a device sets altsetting 0, but the device driver can change
146 * that setting using usb_set_interface(). Alternate settings are often
147 * used to control the use of periodic endpoints, such as by having
148 * different endpoints use different amounts of reserved USB bandwidth.
149 * All standards-conformant USB devices that use isochronous endpoints
150 * will use them in non-default settings.
151 *
152 * The USB specification says that alternate setting numbers must run from
153 * 0 to one less than the total number of alternate settings. But some
154 * devices manage to mess this up, and the structures aren't necessarily
155 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
156 * look up an alternate setting in the altsetting array based on its number.
157 */
158 struct usb_interface {
159 /* array of alternate settings for this interface,
160 * stored in no particular order */
161 struct usb_host_interface *altsetting;
162
163 struct usb_host_interface *cur_altsetting; /* the currently
164 * active alternate setting */
165 unsigned num_altsetting; /* number of alternate settings */
166
167 /* If there is an interface association descriptor then it will list
168 * the associated interfaces */
169 struct usb_interface_assoc_descriptor *intf_assoc;
170
171 int minor; /* minor number this interface is
172 * bound to */
173 enum usb_interface_condition condition; /* state of binding */
174 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
175 unsigned ep_devs_created:1; /* endpoint "devices" exist */
176 unsigned unregistering:1; /* unregistration is in progress */
177 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
178 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
179 unsigned needs_binding:1; /* needs delayed unbind/rebind */
180 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
181
182 struct device dev; /* interface specific device info */
183 struct device *usb_dev;
184 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
185 struct work_struct reset_ws; /* for resets in atomic context */
186 };
187 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
188
189 static inline void *usb_get_intfdata(struct usb_interface *intf)
190 {
191 return dev_get_drvdata(&intf->dev);
192 }
193
194 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
195 {
196 dev_set_drvdata(&intf->dev, data);
197 }
198
199 struct usb_interface *usb_get_intf(struct usb_interface *intf);
200 void usb_put_intf(struct usb_interface *intf);
201
202 /* Hard limit */
203 #define USB_MAXENDPOINTS 30
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES 32
206 #define USB_MAXIADS (USB_MAXINTERFACES/2)
207
208 /*
209 * USB Resume Timer: Every Host controller driver should drive the resume
210 * signalling on the bus for the amount of time defined by this macro.
211 *
212 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
213 *
214 * Note that the USB Specification states we should drive resume for *at least*
215 * 20 ms, but it doesn't give an upper bound. This creates two possible
216 * situations which we want to avoid:
217 *
218 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
219 * us to fail USB Electrical Tests, thus failing Certification
220 *
221 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
222 * and while we can argue that's against the USB Specification, we don't have
223 * control over which devices a certification laboratory will be using for
224 * certification. If CertLab uses a device which was tested against Windows and
225 * that happens to have relaxed resume signalling rules, we might fall into
226 * situations where we fail interoperability and electrical tests.
227 *
228 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
229 * should cope with both LPJ calibration errors and devices not following every
230 * detail of the USB Specification.
231 */
232 #define USB_RESUME_TIMEOUT 40 /* ms */
233
234 /**
235 * struct usb_interface_cache - long-term representation of a device interface
236 * @num_altsetting: number of altsettings defined.
237 * @ref: reference counter.
238 * @altsetting: variable-length array of interface structures, one for
239 * each alternate setting that may be selected. Each one includes a
240 * set of endpoint configurations. They will be in no particular order.
241 *
242 * These structures persist for the lifetime of a usb_device, unlike
243 * struct usb_interface (which persists only as long as its configuration
244 * is installed). The altsetting arrays can be accessed through these
245 * structures at any time, permitting comparison of configurations and
246 * providing support for the /proc/bus/usb/devices pseudo-file.
247 */
248 struct usb_interface_cache {
249 unsigned num_altsetting; /* number of alternate settings */
250 struct kref ref; /* reference counter */
251
252 /* variable-length array of alternate settings for this interface,
253 * stored in no particular order */
254 struct usb_host_interface altsetting[0];
255 };
256 #define ref_to_usb_interface_cache(r) \
257 container_of(r, struct usb_interface_cache, ref)
258 #define altsetting_to_usb_interface_cache(a) \
259 container_of(a, struct usb_interface_cache, altsetting[0])
260
261 /**
262 * struct usb_host_config - representation of a device's configuration
263 * @desc: the device's configuration descriptor.
264 * @string: pointer to the cached version of the iConfiguration string, if
265 * present for this configuration.
266 * @intf_assoc: list of any interface association descriptors in this config
267 * @interface: array of pointers to usb_interface structures, one for each
268 * interface in the configuration. The number of interfaces is stored
269 * in desc.bNumInterfaces. These pointers are valid only while the
270 * the configuration is active.
271 * @intf_cache: array of pointers to usb_interface_cache structures, one
272 * for each interface in the configuration. These structures exist
273 * for the entire life of the device.
274 * @extra: pointer to buffer containing all extra descriptors associated
275 * with this configuration (those preceding the first interface
276 * descriptor).
277 * @extralen: length of the extra descriptors buffer.
278 *
279 * USB devices may have multiple configurations, but only one can be active
280 * at any time. Each encapsulates a different operational environment;
281 * for example, a dual-speed device would have separate configurations for
282 * full-speed and high-speed operation. The number of configurations
283 * available is stored in the device descriptor as bNumConfigurations.
284 *
285 * A configuration can contain multiple interfaces. Each corresponds to
286 * a different function of the USB device, and all are available whenever
287 * the configuration is active. The USB standard says that interfaces
288 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
289 * of devices get this wrong. In addition, the interface array is not
290 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
291 * look up an interface entry based on its number.
292 *
293 * Device drivers should not attempt to activate configurations. The choice
294 * of which configuration to install is a policy decision based on such
295 * considerations as available power, functionality provided, and the user's
296 * desires (expressed through userspace tools). However, drivers can call
297 * usb_reset_configuration() to reinitialize the current configuration and
298 * all its interfaces.
299 */
300 struct usb_host_config {
301 struct usb_config_descriptor desc;
302
303 char *string; /* iConfiguration string, if present */
304
305 /* List of any Interface Association Descriptors in this
306 * configuration. */
307 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
308
309 /* the interfaces associated with this configuration,
310 * stored in no particular order */
311 struct usb_interface *interface[USB_MAXINTERFACES];
312
313 /* Interface information available even when this is not the
314 * active configuration */
315 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
316
317 unsigned char *extra; /* Extra descriptors */
318 int extralen;
319 };
320
321 /* USB2.0 and USB3.0 device BOS descriptor set */
322 struct usb_host_bos {
323 struct usb_bos_descriptor *desc;
324
325 /* wireless cap descriptor is handled by wusb */
326 struct usb_ext_cap_descriptor *ext_cap;
327 struct usb_ss_cap_descriptor *ss_cap;
328 struct usb_ss_container_id_descriptor *ss_id;
329 };
330
331 int __usb_get_extra_descriptor(char *buffer, unsigned size,
332 unsigned char type, void **ptr);
333 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
334 __usb_get_extra_descriptor((ifpoint)->extra, \
335 (ifpoint)->extralen, \
336 type, (void **)ptr)
337
338 /* ----------------------------------------------------------------------- */
339
340 /* USB device number allocation bitmap */
341 struct usb_devmap {
342 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
343 };
344
345 /*
346 * Allocated per bus (tree of devices) we have:
347 */
348 struct usb_bus {
349 struct device *controller; /* host/master side hardware */
350 int busnum; /* Bus number (in order of reg) */
351 const char *bus_name; /* stable id (PCI slot_name etc) */
352 u8 uses_dma; /* Does the host controller use DMA? */
353 u8 uses_pio_for_control; /*
354 * Does the host controller use PIO
355 * for control transfers?
356 */
357 u8 otg_port; /* 0, or number of OTG/HNP port */
358 unsigned is_b_host:1; /* true during some HNP roleswitches */
359 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
360 unsigned no_stop_on_short:1; /*
361 * Quirk: some controllers don't stop
362 * the ep queue on a short transfer
363 * with the URB_SHORT_NOT_OK flag set.
364 */
365 unsigned no_sg_constraint:1; /* no sg constraint */
366 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
367
368 int devnum_next; /* Next open device number in
369 * round-robin allocation */
370
371 struct usb_devmap devmap; /* device address allocation map */
372 struct usb_device *root_hub; /* Root hub */
373 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
374 struct list_head bus_list; /* list of busses */
375
376 struct mutex usb_address0_mutex; /* unaddressed device mutex */
377
378 int bandwidth_allocated; /* on this bus: how much of the time
379 * reserved for periodic (intr/iso)
380 * requests is used, on average?
381 * Units: microseconds/frame.
382 * Limits: Full/low speed reserve 90%,
383 * while high speed reserves 80%.
384 */
385 int bandwidth_int_reqs; /* number of Interrupt requests */
386 int bandwidth_isoc_reqs; /* number of Isoc. requests */
387
388 unsigned resuming_ports; /* bit array: resuming root-hub ports */
389
390 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
391 struct mon_bus *mon_bus; /* non-null when associated */
392 int monitored; /* non-zero when monitored */
393 #endif
394 };
395
396 struct usb_dev_state;
397
398 /* ----------------------------------------------------------------------- */
399
400 struct usb_tt;
401
402 enum usb_device_removable {
403 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
404 USB_DEVICE_REMOVABLE,
405 USB_DEVICE_FIXED,
406 };
407
408 enum usb_port_connect_type {
409 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
410 USB_PORT_CONNECT_TYPE_HOT_PLUG,
411 USB_PORT_CONNECT_TYPE_HARD_WIRED,
412 USB_PORT_NOT_USED,
413 };
414
415 /*
416 * USB 2.0 Link Power Management (LPM) parameters.
417 */
418 struct usb2_lpm_parameters {
419 /* Best effort service latency indicate how long the host will drive
420 * resume on an exit from L1.
421 */
422 unsigned int besl;
423
424 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
425 * When the timer counts to zero, the parent hub will initiate a LPM
426 * transition to L1.
427 */
428 int timeout;
429 };
430
431 /*
432 * USB 3.0 Link Power Management (LPM) parameters.
433 *
434 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
435 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
436 * All three are stored in nanoseconds.
437 */
438 struct usb3_lpm_parameters {
439 /*
440 * Maximum exit latency (MEL) for the host to send a packet to the
441 * device (either a Ping for isoc endpoints, or a data packet for
442 * interrupt endpoints), the hubs to decode the packet, and for all hubs
443 * in the path to transition the links to U0.
444 */
445 unsigned int mel;
446 /*
447 * Maximum exit latency for a device-initiated LPM transition to bring
448 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
449 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
450 */
451 unsigned int pel;
452
453 /*
454 * The System Exit Latency (SEL) includes PEL, and three other
455 * latencies. After a device initiates a U0 transition, it will take
456 * some time from when the device sends the ERDY to when it will finally
457 * receive the data packet. Basically, SEL should be the worse-case
458 * latency from when a device starts initiating a U0 transition to when
459 * it will get data.
460 */
461 unsigned int sel;
462 /*
463 * The idle timeout value that is currently programmed into the parent
464 * hub for this device. When the timer counts to zero, the parent hub
465 * will initiate an LPM transition to either U1 or U2.
466 */
467 int timeout;
468 };
469
470 /**
471 * struct usb_device - kernel's representation of a USB device
472 * @devnum: device number; address on a USB bus
473 * @devpath: device ID string for use in messages (e.g., /port/...)
474 * @route: tree topology hex string for use with xHCI
475 * @state: device state: configured, not attached, etc.
476 * @speed: device speed: high/full/low (or error)
477 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
478 * @ttport: device port on that tt hub
479 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
480 * @parent: our hub, unless we're the root
481 * @bus: bus we're part of
482 * @ep0: endpoint 0 data (default control pipe)
483 * @dev: generic device interface
484 * @descriptor: USB device descriptor
485 * @bos: USB device BOS descriptor set
486 * @config: all of the device's configs
487 * @actconfig: the active configuration
488 * @ep_in: array of IN endpoints
489 * @ep_out: array of OUT endpoints
490 * @rawdescriptors: raw descriptors for each config
491 * @bus_mA: Current available from the bus
492 * @portnum: parent port number (origin 1)
493 * @level: number of USB hub ancestors
494 * @can_submit: URBs may be submitted
495 * @persist_enabled: USB_PERSIST enabled for this device
496 * @have_langid: whether string_langid is valid
497 * @authorized: policy has said we can use it;
498 * (user space) policy determines if we authorize this device to be
499 * used or not. By default, wired USB devices are authorized.
500 * WUSB devices are not, until we authorize them from user space.
501 * FIXME -- complete doc
502 * @authenticated: Crypto authentication passed
503 * @wusb: device is Wireless USB
504 * @lpm_capable: device supports LPM
505 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
506 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
507 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
508 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
509 * @usb3_lpm_enabled: USB3 hardware LPM enabled
510 * @string_langid: language ID for strings
511 * @product: iProduct string, if present (static)
512 * @manufacturer: iManufacturer string, if present (static)
513 * @serial: iSerialNumber string, if present (static)
514 * @filelist: usbfs files that are open to this device
515 * @maxchild: number of ports if hub
516 * @quirks: quirks of the whole device
517 * @urbnum: number of URBs submitted for the whole device
518 * @active_duration: total time device is not suspended
519 * @connect_time: time device was first connected
520 * @do_remote_wakeup: remote wakeup should be enabled
521 * @reset_resume: needs reset instead of resume
522 * @port_is_suspended: the upstream port is suspended (L2 or U3)
523 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
524 * specific data for the device.
525 * @slot_id: Slot ID assigned by xHCI
526 * @removable: Device can be physically removed from this port
527 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
528 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
529 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
530 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
531 * to keep track of the number of functions that require USB 3.0 Link Power
532 * Management to be disabled for this usb_device. This count should only
533 * be manipulated by those functions, with the bandwidth_mutex is held.
534 *
535 * Notes:
536 * Usbcore drivers should not set usbdev->state directly. Instead use
537 * usb_set_device_state().
538 */
539 struct usb_device {
540 int devnum;
541 char devpath[16];
542 u32 route;
543 enum usb_device_state state;
544 enum usb_device_speed speed;
545
546 struct usb_tt *tt;
547 int ttport;
548
549 unsigned int toggle[2];
550
551 struct usb_device *parent;
552 struct usb_bus *bus;
553 struct usb_host_endpoint ep0;
554
555 struct device dev;
556
557 struct usb_device_descriptor descriptor;
558 struct usb_host_bos *bos;
559 struct usb_host_config *config;
560
561 struct usb_host_config *actconfig;
562 struct usb_host_endpoint *ep_in[16];
563 struct usb_host_endpoint *ep_out[16];
564
565 char **rawdescriptors;
566
567 unsigned short bus_mA;
568 u8 portnum;
569 u8 level;
570
571 unsigned can_submit:1;
572 unsigned persist_enabled:1;
573 unsigned have_langid:1;
574 unsigned authorized:1;
575 unsigned authenticated:1;
576 unsigned wusb:1;
577 unsigned lpm_capable:1;
578 unsigned usb2_hw_lpm_capable:1;
579 unsigned usb2_hw_lpm_besl_capable:1;
580 unsigned usb2_hw_lpm_enabled:1;
581 unsigned usb2_hw_lpm_allowed:1;
582 unsigned usb3_lpm_enabled:1;
583 int string_langid;
584
585 /* static strings from the device */
586 char *product;
587 char *manufacturer;
588 char *serial;
589
590 struct list_head filelist;
591
592 int maxchild;
593
594 u32 quirks;
595 atomic_t urbnum;
596
597 unsigned long active_duration;
598
599 #ifdef CONFIG_PM
600 unsigned long connect_time;
601
602 unsigned do_remote_wakeup:1;
603 unsigned reset_resume:1;
604 unsigned port_is_suspended:1;
605 #endif
606 struct wusb_dev *wusb_dev;
607 int slot_id;
608 enum usb_device_removable removable;
609 struct usb2_lpm_parameters l1_params;
610 struct usb3_lpm_parameters u1_params;
611 struct usb3_lpm_parameters u2_params;
612 unsigned lpm_disable_count;
613 };
614 #define to_usb_device(d) container_of(d, struct usb_device, dev)
615
616 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
617 {
618 return to_usb_device(intf->dev.parent);
619 }
620
621 extern struct usb_device *usb_get_dev(struct usb_device *dev);
622 extern void usb_put_dev(struct usb_device *dev);
623 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
624 int port1);
625
626 /**
627 * usb_hub_for_each_child - iterate over all child devices on the hub
628 * @hdev: USB device belonging to the usb hub
629 * @port1: portnum associated with child device
630 * @child: child device pointer
631 */
632 #define usb_hub_for_each_child(hdev, port1, child) \
633 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
634 port1 <= hdev->maxchild; \
635 child = usb_hub_find_child(hdev, ++port1)) \
636 if (!child) continue; else
637
638 /* USB device locking */
639 #define usb_lock_device(udev) device_lock(&(udev)->dev)
640 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
641 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
642 extern int usb_lock_device_for_reset(struct usb_device *udev,
643 const struct usb_interface *iface);
644
645 /* USB port reset for device reinitialization */
646 extern int usb_reset_device(struct usb_device *dev);
647 extern void usb_queue_reset_device(struct usb_interface *dev);
648
649 #ifdef CONFIG_ACPI
650 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
651 bool enable);
652 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
653 #else
654 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
655 bool enable) { return 0; }
656 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
657 { return true; }
658 #endif
659
660 /* USB autosuspend and autoresume */
661 #ifdef CONFIG_PM
662 extern void usb_enable_autosuspend(struct usb_device *udev);
663 extern void usb_disable_autosuspend(struct usb_device *udev);
664
665 extern int usb_autopm_get_interface(struct usb_interface *intf);
666 extern void usb_autopm_put_interface(struct usb_interface *intf);
667 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
668 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
669 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
670 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
671
672 static inline void usb_mark_last_busy(struct usb_device *udev)
673 {
674 pm_runtime_mark_last_busy(&udev->dev);
675 }
676
677 #else
678
679 static inline int usb_enable_autosuspend(struct usb_device *udev)
680 { return 0; }
681 static inline int usb_disable_autosuspend(struct usb_device *udev)
682 { return 0; }
683
684 static inline int usb_autopm_get_interface(struct usb_interface *intf)
685 { return 0; }
686 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
687 { return 0; }
688
689 static inline void usb_autopm_put_interface(struct usb_interface *intf)
690 { }
691 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
692 { }
693 static inline void usb_autopm_get_interface_no_resume(
694 struct usb_interface *intf)
695 { }
696 static inline void usb_autopm_put_interface_no_suspend(
697 struct usb_interface *intf)
698 { }
699 static inline void usb_mark_last_busy(struct usb_device *udev)
700 { }
701 #endif
702
703 extern int usb_disable_lpm(struct usb_device *udev);
704 extern void usb_enable_lpm(struct usb_device *udev);
705 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
706 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
707 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
708
709 extern int usb_disable_ltm(struct usb_device *udev);
710 extern void usb_enable_ltm(struct usb_device *udev);
711
712 static inline bool usb_device_supports_ltm(struct usb_device *udev)
713 {
714 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
715 return false;
716 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
717 }
718
719 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
720 {
721 return udev && udev->bus && udev->bus->no_sg_constraint;
722 }
723
724
725 /*-------------------------------------------------------------------------*/
726
727 /* for drivers using iso endpoints */
728 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
729
730 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
731 extern int usb_alloc_streams(struct usb_interface *interface,
732 struct usb_host_endpoint **eps, unsigned int num_eps,
733 unsigned int num_streams, gfp_t mem_flags);
734
735 /* Reverts a group of bulk endpoints back to not using stream IDs. */
736 extern int usb_free_streams(struct usb_interface *interface,
737 struct usb_host_endpoint **eps, unsigned int num_eps,
738 gfp_t mem_flags);
739
740 /* used these for multi-interface device registration */
741 extern int usb_driver_claim_interface(struct usb_driver *driver,
742 struct usb_interface *iface, void *priv);
743
744 /**
745 * usb_interface_claimed - returns true iff an interface is claimed
746 * @iface: the interface being checked
747 *
748 * Return: %true (nonzero) iff the interface is claimed, else %false
749 * (zero).
750 *
751 * Note:
752 * Callers must own the driver model's usb bus readlock. So driver
753 * probe() entries don't need extra locking, but other call contexts
754 * may need to explicitly claim that lock.
755 *
756 */
757 static inline int usb_interface_claimed(struct usb_interface *iface)
758 {
759 return (iface->dev.driver != NULL);
760 }
761
762 extern void usb_driver_release_interface(struct usb_driver *driver,
763 struct usb_interface *iface);
764 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
765 const struct usb_device_id *id);
766 extern int usb_match_one_id(struct usb_interface *interface,
767 const struct usb_device_id *id);
768
769 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
770 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
771 int minor);
772 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
773 unsigned ifnum);
774 extern struct usb_host_interface *usb_altnum_to_altsetting(
775 const struct usb_interface *intf, unsigned int altnum);
776 extern struct usb_host_interface *usb_find_alt_setting(
777 struct usb_host_config *config,
778 unsigned int iface_num,
779 unsigned int alt_num);
780
781 /* port claiming functions */
782 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
783 struct usb_dev_state *owner);
784 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
785 struct usb_dev_state *owner);
786
787 /**
788 * usb_make_path - returns stable device path in the usb tree
789 * @dev: the device whose path is being constructed
790 * @buf: where to put the string
791 * @size: how big is "buf"?
792 *
793 * Return: Length of the string (> 0) or negative if size was too small.
794 *
795 * Note:
796 * This identifier is intended to be "stable", reflecting physical paths in
797 * hardware such as physical bus addresses for host controllers or ports on
798 * USB hubs. That makes it stay the same until systems are physically
799 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
800 * controllers. Adding and removing devices, including virtual root hubs
801 * in host controller driver modules, does not change these path identifiers;
802 * neither does rebooting or re-enumerating. These are more useful identifiers
803 * than changeable ("unstable") ones like bus numbers or device addresses.
804 *
805 * With a partial exception for devices connected to USB 2.0 root hubs, these
806 * identifiers are also predictable. So long as the device tree isn't changed,
807 * plugging any USB device into a given hub port always gives it the same path.
808 * Because of the use of "companion" controllers, devices connected to ports on
809 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
810 * high speed, and a different one if they are full or low speed.
811 */
812 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
813 {
814 int actual;
815 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
816 dev->devpath);
817 return (actual >= (int)size) ? -1 : actual;
818 }
819
820 /*-------------------------------------------------------------------------*/
821
822 #define USB_DEVICE_ID_MATCH_DEVICE \
823 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
824 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
825 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
826 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
827 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
828 #define USB_DEVICE_ID_MATCH_DEV_INFO \
829 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
830 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
831 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
832 #define USB_DEVICE_ID_MATCH_INT_INFO \
833 (USB_DEVICE_ID_MATCH_INT_CLASS | \
834 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
835 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
836
837 /**
838 * USB_DEVICE - macro used to describe a specific usb device
839 * @vend: the 16 bit USB Vendor ID
840 * @prod: the 16 bit USB Product ID
841 *
842 * This macro is used to create a struct usb_device_id that matches a
843 * specific device.
844 */
845 #define USB_DEVICE(vend, prod) \
846 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
847 .idVendor = (vend), \
848 .idProduct = (prod)
849 /**
850 * USB_DEVICE_VER - describe a specific usb device with a version range
851 * @vend: the 16 bit USB Vendor ID
852 * @prod: the 16 bit USB Product ID
853 * @lo: the bcdDevice_lo value
854 * @hi: the bcdDevice_hi value
855 *
856 * This macro is used to create a struct usb_device_id that matches a
857 * specific device, with a version range.
858 */
859 #define USB_DEVICE_VER(vend, prod, lo, hi) \
860 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
861 .idVendor = (vend), \
862 .idProduct = (prod), \
863 .bcdDevice_lo = (lo), \
864 .bcdDevice_hi = (hi)
865
866 /**
867 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
868 * @vend: the 16 bit USB Vendor ID
869 * @prod: the 16 bit USB Product ID
870 * @cl: bInterfaceClass value
871 *
872 * This macro is used to create a struct usb_device_id that matches a
873 * specific interface class of devices.
874 */
875 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
876 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
877 USB_DEVICE_ID_MATCH_INT_CLASS, \
878 .idVendor = (vend), \
879 .idProduct = (prod), \
880 .bInterfaceClass = (cl)
881
882 /**
883 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
884 * @vend: the 16 bit USB Vendor ID
885 * @prod: the 16 bit USB Product ID
886 * @pr: bInterfaceProtocol value
887 *
888 * This macro is used to create a struct usb_device_id that matches a
889 * specific interface protocol of devices.
890 */
891 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
892 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
893 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
894 .idVendor = (vend), \
895 .idProduct = (prod), \
896 .bInterfaceProtocol = (pr)
897
898 /**
899 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
900 * @vend: the 16 bit USB Vendor ID
901 * @prod: the 16 bit USB Product ID
902 * @num: bInterfaceNumber value
903 *
904 * This macro is used to create a struct usb_device_id that matches a
905 * specific interface number of devices.
906 */
907 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
908 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
909 USB_DEVICE_ID_MATCH_INT_NUMBER, \
910 .idVendor = (vend), \
911 .idProduct = (prod), \
912 .bInterfaceNumber = (num)
913
914 /**
915 * USB_DEVICE_INFO - macro used to describe a class of usb devices
916 * @cl: bDeviceClass value
917 * @sc: bDeviceSubClass value
918 * @pr: bDeviceProtocol value
919 *
920 * This macro is used to create a struct usb_device_id that matches a
921 * specific class of devices.
922 */
923 #define USB_DEVICE_INFO(cl, sc, pr) \
924 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
925 .bDeviceClass = (cl), \
926 .bDeviceSubClass = (sc), \
927 .bDeviceProtocol = (pr)
928
929 /**
930 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
931 * @cl: bInterfaceClass value
932 * @sc: bInterfaceSubClass value
933 * @pr: bInterfaceProtocol value
934 *
935 * This macro is used to create a struct usb_device_id that matches a
936 * specific class of interfaces.
937 */
938 #define USB_INTERFACE_INFO(cl, sc, pr) \
939 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
940 .bInterfaceClass = (cl), \
941 .bInterfaceSubClass = (sc), \
942 .bInterfaceProtocol = (pr)
943
944 /**
945 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
946 * @vend: the 16 bit USB Vendor ID
947 * @prod: the 16 bit USB Product ID
948 * @cl: bInterfaceClass value
949 * @sc: bInterfaceSubClass value
950 * @pr: bInterfaceProtocol value
951 *
952 * This macro is used to create a struct usb_device_id that matches a
953 * specific device with a specific class of interfaces.
954 *
955 * This is especially useful when explicitly matching devices that have
956 * vendor specific bDeviceClass values, but standards-compliant interfaces.
957 */
958 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
959 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
960 | USB_DEVICE_ID_MATCH_DEVICE, \
961 .idVendor = (vend), \
962 .idProduct = (prod), \
963 .bInterfaceClass = (cl), \
964 .bInterfaceSubClass = (sc), \
965 .bInterfaceProtocol = (pr)
966
967 /**
968 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
969 * @vend: the 16 bit USB Vendor ID
970 * @cl: bInterfaceClass value
971 * @sc: bInterfaceSubClass value
972 * @pr: bInterfaceProtocol value
973 *
974 * This macro is used to create a struct usb_device_id that matches a
975 * specific vendor with a specific class of interfaces.
976 *
977 * This is especially useful when explicitly matching devices that have
978 * vendor specific bDeviceClass values, but standards-compliant interfaces.
979 */
980 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
981 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
982 | USB_DEVICE_ID_MATCH_VENDOR, \
983 .idVendor = (vend), \
984 .bInterfaceClass = (cl), \
985 .bInterfaceSubClass = (sc), \
986 .bInterfaceProtocol = (pr)
987
988 /* ----------------------------------------------------------------------- */
989
990 /* Stuff for dynamic usb ids */
991 struct usb_dynids {
992 spinlock_t lock;
993 struct list_head list;
994 };
995
996 struct usb_dynid {
997 struct list_head node;
998 struct usb_device_id id;
999 };
1000
1001 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1002 const struct usb_device_id *id_table,
1003 struct device_driver *driver,
1004 const char *buf, size_t count);
1005
1006 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1007
1008 /**
1009 * struct usbdrv_wrap - wrapper for driver-model structure
1010 * @driver: The driver-model core driver structure.
1011 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1012 */
1013 struct usbdrv_wrap {
1014 struct device_driver driver;
1015 int for_devices;
1016 };
1017
1018 /**
1019 * struct usb_driver - identifies USB interface driver to usbcore
1020 * @name: The driver name should be unique among USB drivers,
1021 * and should normally be the same as the module name.
1022 * @probe: Called to see if the driver is willing to manage a particular
1023 * interface on a device. If it is, probe returns zero and uses
1024 * usb_set_intfdata() to associate driver-specific data with the
1025 * interface. It may also use usb_set_interface() to specify the
1026 * appropriate altsetting. If unwilling to manage the interface,
1027 * return -ENODEV, if genuine IO errors occurred, an appropriate
1028 * negative errno value.
1029 * @disconnect: Called when the interface is no longer accessible, usually
1030 * because its device has been (or is being) disconnected or the
1031 * driver module is being unloaded.
1032 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1033 * the "usbfs" filesystem. This lets devices provide ways to
1034 * expose information to user space regardless of where they
1035 * do (or don't) show up otherwise in the filesystem.
1036 * @suspend: Called when the device is going to be suspended by the
1037 * system either from system sleep or runtime suspend context. The
1038 * return value will be ignored in system sleep context, so do NOT
1039 * try to continue using the device if suspend fails in this case.
1040 * Instead, let the resume or reset-resume routine recover from
1041 * the failure.
1042 * @resume: Called when the device is being resumed by the system.
1043 * @reset_resume: Called when the suspended device has been reset instead
1044 * of being resumed.
1045 * @pre_reset: Called by usb_reset_device() when the device is about to be
1046 * reset. This routine must not return until the driver has no active
1047 * URBs for the device, and no more URBs may be submitted until the
1048 * post_reset method is called.
1049 * @post_reset: Called by usb_reset_device() after the device
1050 * has been reset
1051 * @id_table: USB drivers use ID table to support hotplugging.
1052 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1053 * or your driver's probe function will never get called.
1054 * @dynids: used internally to hold the list of dynamically added device
1055 * ids for this driver.
1056 * @drvwrap: Driver-model core structure wrapper.
1057 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1058 * added to this driver by preventing the sysfs file from being created.
1059 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1060 * for interfaces bound to this driver.
1061 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1062 * endpoints before calling the driver's disconnect method.
1063 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1064 * to initiate lower power link state transitions when an idle timeout
1065 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1066 *
1067 * USB interface drivers must provide a name, probe() and disconnect()
1068 * methods, and an id_table. Other driver fields are optional.
1069 *
1070 * The id_table is used in hotplugging. It holds a set of descriptors,
1071 * and specialized data may be associated with each entry. That table
1072 * is used by both user and kernel mode hotplugging support.
1073 *
1074 * The probe() and disconnect() methods are called in a context where
1075 * they can sleep, but they should avoid abusing the privilege. Most
1076 * work to connect to a device should be done when the device is opened,
1077 * and undone at the last close. The disconnect code needs to address
1078 * concurrency issues with respect to open() and close() methods, as
1079 * well as forcing all pending I/O requests to complete (by unlinking
1080 * them as necessary, and blocking until the unlinks complete).
1081 */
1082 struct usb_driver {
1083 const char *name;
1084
1085 int (*probe) (struct usb_interface *intf,
1086 const struct usb_device_id *id);
1087
1088 void (*disconnect) (struct usb_interface *intf);
1089
1090 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1091 void *buf);
1092
1093 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1094 int (*resume) (struct usb_interface *intf);
1095 int (*reset_resume)(struct usb_interface *intf);
1096
1097 int (*pre_reset)(struct usb_interface *intf);
1098 int (*post_reset)(struct usb_interface *intf);
1099
1100 const struct usb_device_id *id_table;
1101
1102 struct usb_dynids dynids;
1103 struct usbdrv_wrap drvwrap;
1104 unsigned int no_dynamic_id:1;
1105 unsigned int supports_autosuspend:1;
1106 unsigned int disable_hub_initiated_lpm:1;
1107 unsigned int soft_unbind:1;
1108 };
1109 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1110
1111 /**
1112 * struct usb_device_driver - identifies USB device driver to usbcore
1113 * @name: The driver name should be unique among USB drivers,
1114 * and should normally be the same as the module name.
1115 * @probe: Called to see if the driver is willing to manage a particular
1116 * device. If it is, probe returns zero and uses dev_set_drvdata()
1117 * to associate driver-specific data with the device. If unwilling
1118 * to manage the device, return a negative errno value.
1119 * @disconnect: Called when the device is no longer accessible, usually
1120 * because it has been (or is being) disconnected or the driver's
1121 * module is being unloaded.
1122 * @suspend: Called when the device is going to be suspended by the system.
1123 * @resume: Called when the device is being resumed by the system.
1124 * @drvwrap: Driver-model core structure wrapper.
1125 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1126 * for devices bound to this driver.
1127 *
1128 * USB drivers must provide all the fields listed above except drvwrap.
1129 */
1130 struct usb_device_driver {
1131 const char *name;
1132
1133 int (*probe) (struct usb_device *udev);
1134 void (*disconnect) (struct usb_device *udev);
1135
1136 int (*suspend) (struct usb_device *udev, pm_message_t message);
1137 int (*resume) (struct usb_device *udev, pm_message_t message);
1138 struct usbdrv_wrap drvwrap;
1139 unsigned int supports_autosuspend:1;
1140 };
1141 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1142 drvwrap.driver)
1143
1144 extern struct bus_type usb_bus_type;
1145
1146 /**
1147 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1148 * @name: the usb class device name for this driver. Will show up in sysfs.
1149 * @devnode: Callback to provide a naming hint for a possible
1150 * device node to create.
1151 * @fops: pointer to the struct file_operations of this driver.
1152 * @minor_base: the start of the minor range for this driver.
1153 *
1154 * This structure is used for the usb_register_dev() and
1155 * usb_unregister_dev() functions, to consolidate a number of the
1156 * parameters used for them.
1157 */
1158 struct usb_class_driver {
1159 char *name;
1160 char *(*devnode)(struct device *dev, umode_t *mode);
1161 const struct file_operations *fops;
1162 int minor_base;
1163 };
1164
1165 /*
1166 * use these in module_init()/module_exit()
1167 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1168 */
1169 extern int usb_register_driver(struct usb_driver *, struct module *,
1170 const char *);
1171
1172 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1173 #define usb_register(driver) \
1174 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1175
1176 extern void usb_deregister(struct usb_driver *);
1177
1178 /**
1179 * module_usb_driver() - Helper macro for registering a USB driver
1180 * @__usb_driver: usb_driver struct
1181 *
1182 * Helper macro for USB drivers which do not do anything special in module
1183 * init/exit. This eliminates a lot of boilerplate. Each module may only
1184 * use this macro once, and calling it replaces module_init() and module_exit()
1185 */
1186 #define module_usb_driver(__usb_driver) \
1187 module_driver(__usb_driver, usb_register, \
1188 usb_deregister)
1189
1190 extern int usb_register_device_driver(struct usb_device_driver *,
1191 struct module *);
1192 extern void usb_deregister_device_driver(struct usb_device_driver *);
1193
1194 extern int usb_register_dev(struct usb_interface *intf,
1195 struct usb_class_driver *class_driver);
1196 extern void usb_deregister_dev(struct usb_interface *intf,
1197 struct usb_class_driver *class_driver);
1198
1199 extern int usb_disabled(void);
1200
1201 /* ----------------------------------------------------------------------- */
1202
1203 /*
1204 * URB support, for asynchronous request completions
1205 */
1206
1207 /*
1208 * urb->transfer_flags:
1209 *
1210 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1211 */
1212 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1213 #define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1214 * slot in the schedule */
1215 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1216 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1217 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1218 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1219 * needed */
1220 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1221
1222 /* The following flags are used internally by usbcore and HCDs */
1223 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1224 #define URB_DIR_OUT 0
1225 #define URB_DIR_MASK URB_DIR_IN
1226
1227 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1228 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1229 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1230 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1231 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1232 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1233 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1234 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1235
1236 struct usb_iso_packet_descriptor {
1237 unsigned int offset;
1238 unsigned int length; /* expected length */
1239 unsigned int actual_length;
1240 int status;
1241 };
1242
1243 struct urb;
1244
1245 struct usb_anchor {
1246 struct list_head urb_list;
1247 wait_queue_head_t wait;
1248 spinlock_t lock;
1249 atomic_t suspend_wakeups;
1250 unsigned int poisoned:1;
1251 };
1252
1253 static inline void init_usb_anchor(struct usb_anchor *anchor)
1254 {
1255 memset(anchor, 0, sizeof(*anchor));
1256 INIT_LIST_HEAD(&anchor->urb_list);
1257 init_waitqueue_head(&anchor->wait);
1258 spin_lock_init(&anchor->lock);
1259 }
1260
1261 typedef void (*usb_complete_t)(struct urb *);
1262
1263 /**
1264 * struct urb - USB Request Block
1265 * @urb_list: For use by current owner of the URB.
1266 * @anchor_list: membership in the list of an anchor
1267 * @anchor: to anchor URBs to a common mooring
1268 * @ep: Points to the endpoint's data structure. Will eventually
1269 * replace @pipe.
1270 * @pipe: Holds endpoint number, direction, type, and more.
1271 * Create these values with the eight macros available;
1272 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1273 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1274 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1275 * numbers range from zero to fifteen. Note that "in" endpoint two
1276 * is a different endpoint (and pipe) from "out" endpoint two.
1277 * The current configuration controls the existence, type, and
1278 * maximum packet size of any given endpoint.
1279 * @stream_id: the endpoint's stream ID for bulk streams
1280 * @dev: Identifies the USB device to perform the request.
1281 * @status: This is read in non-iso completion functions to get the
1282 * status of the particular request. ISO requests only use it
1283 * to tell whether the URB was unlinked; detailed status for
1284 * each frame is in the fields of the iso_frame-desc.
1285 * @transfer_flags: A variety of flags may be used to affect how URB
1286 * submission, unlinking, or operation are handled. Different
1287 * kinds of URB can use different flags.
1288 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1289 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1290 * (however, do not leave garbage in transfer_buffer even then).
1291 * This buffer must be suitable for DMA; allocate it with
1292 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1293 * of this buffer will be modified. This buffer is used for the data
1294 * stage of control transfers.
1295 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1296 * the device driver is saying that it provided this DMA address,
1297 * which the host controller driver should use in preference to the
1298 * transfer_buffer.
1299 * @sg: scatter gather buffer list, the buffer size of each element in
1300 * the list (except the last) must be divisible by the endpoint's
1301 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1302 * @num_mapped_sgs: (internal) number of mapped sg entries
1303 * @num_sgs: number of entries in the sg list
1304 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1305 * be broken up into chunks according to the current maximum packet
1306 * size for the endpoint, which is a function of the configuration
1307 * and is encoded in the pipe. When the length is zero, neither
1308 * transfer_buffer nor transfer_dma is used.
1309 * @actual_length: This is read in non-iso completion functions, and
1310 * it tells how many bytes (out of transfer_buffer_length) were
1311 * transferred. It will normally be the same as requested, unless
1312 * either an error was reported or a short read was performed.
1313 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1314 * short reads be reported as errors.
1315 * @setup_packet: Only used for control transfers, this points to eight bytes
1316 * of setup data. Control transfers always start by sending this data
1317 * to the device. Then transfer_buffer is read or written, if needed.
1318 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1319 * this field; setup_packet must point to a valid buffer.
1320 * @start_frame: Returns the initial frame for isochronous transfers.
1321 * @number_of_packets: Lists the number of ISO transfer buffers.
1322 * @interval: Specifies the polling interval for interrupt or isochronous
1323 * transfers. The units are frames (milliseconds) for full and low
1324 * speed devices, and microframes (1/8 millisecond) for highspeed
1325 * and SuperSpeed devices.
1326 * @error_count: Returns the number of ISO transfers that reported errors.
1327 * @context: For use in completion functions. This normally points to
1328 * request-specific driver context.
1329 * @complete: Completion handler. This URB is passed as the parameter to the
1330 * completion function. The completion function may then do what
1331 * it likes with the URB, including resubmitting or freeing it.
1332 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1333 * collect the transfer status for each buffer.
1334 *
1335 * This structure identifies USB transfer requests. URBs must be allocated by
1336 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1337 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1338 * are submitted using usb_submit_urb(), and pending requests may be canceled
1339 * using usb_unlink_urb() or usb_kill_urb().
1340 *
1341 * Data Transfer Buffers:
1342 *
1343 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1344 * taken from the general page pool. That is provided by transfer_buffer
1345 * (control requests also use setup_packet), and host controller drivers
1346 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1347 * mapping operations can be expensive on some platforms (perhaps using a dma
1348 * bounce buffer or talking to an IOMMU),
1349 * although they're cheap on commodity x86 and ppc hardware.
1350 *
1351 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1352 * which tells the host controller driver that no such mapping is needed for
1353 * the transfer_buffer since
1354 * the device driver is DMA-aware. For example, a device driver might
1355 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1356 * When this transfer flag is provided, host controller drivers will
1357 * attempt to use the dma address found in the transfer_dma
1358 * field rather than determining a dma address themselves.
1359 *
1360 * Note that transfer_buffer must still be set if the controller
1361 * does not support DMA (as indicated by bus.uses_dma) and when talking
1362 * to root hub. If you have to trasfer between highmem zone and the device
1363 * on such controller, create a bounce buffer or bail out with an error.
1364 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1365 * capable, assign NULL to it, so that usbmon knows not to use the value.
1366 * The setup_packet must always be set, so it cannot be located in highmem.
1367 *
1368 * Initialization:
1369 *
1370 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1371 * zero), and complete fields. All URBs must also initialize
1372 * transfer_buffer and transfer_buffer_length. They may provide the
1373 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1374 * to be treated as errors; that flag is invalid for write requests.
1375 *
1376 * Bulk URBs may
1377 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1378 * should always terminate with a short packet, even if it means adding an
1379 * extra zero length packet.
1380 *
1381 * Control URBs must provide a valid pointer in the setup_packet field.
1382 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1383 * beforehand.
1384 *
1385 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1386 * or, for highspeed devices, 125 microsecond units)
1387 * to poll for transfers. After the URB has been submitted, the interval
1388 * field reflects how the transfer was actually scheduled.
1389 * The polling interval may be more frequent than requested.
1390 * For example, some controllers have a maximum interval of 32 milliseconds,
1391 * while others support intervals of up to 1024 milliseconds.
1392 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1393 * endpoints, as well as high speed interrupt endpoints, the encoding of
1394 * the transfer interval in the endpoint descriptor is logarithmic.
1395 * Device drivers must convert that value to linear units themselves.)
1396 *
1397 * If an isochronous endpoint queue isn't already running, the host
1398 * controller will schedule a new URB to start as soon as bandwidth
1399 * utilization allows. If the queue is running then a new URB will be
1400 * scheduled to start in the first transfer slot following the end of the
1401 * preceding URB, if that slot has not already expired. If the slot has
1402 * expired (which can happen when IRQ delivery is delayed for a long time),
1403 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1404 * is clear then the URB will be scheduled to start in the expired slot,
1405 * implying that some of its packets will not be transferred; if the flag
1406 * is set then the URB will be scheduled in the first unexpired slot,
1407 * breaking the queue's synchronization. Upon URB completion, the
1408 * start_frame field will be set to the (micro)frame number in which the
1409 * transfer was scheduled. Ranges for frame counter values are HC-specific
1410 * and can go from as low as 256 to as high as 65536 frames.
1411 *
1412 * Isochronous URBs have a different data transfer model, in part because
1413 * the quality of service is only "best effort". Callers provide specially
1414 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1415 * at the end. Each such packet is an individual ISO transfer. Isochronous
1416 * URBs are normally queued, submitted by drivers to arrange that
1417 * transfers are at least double buffered, and then explicitly resubmitted
1418 * in completion handlers, so
1419 * that data (such as audio or video) streams at as constant a rate as the
1420 * host controller scheduler can support.
1421 *
1422 * Completion Callbacks:
1423 *
1424 * The completion callback is made in_interrupt(), and one of the first
1425 * things that a completion handler should do is check the status field.
1426 * The status field is provided for all URBs. It is used to report
1427 * unlinked URBs, and status for all non-ISO transfers. It should not
1428 * be examined before the URB is returned to the completion handler.
1429 *
1430 * The context field is normally used to link URBs back to the relevant
1431 * driver or request state.
1432 *
1433 * When the completion callback is invoked for non-isochronous URBs, the
1434 * actual_length field tells how many bytes were transferred. This field
1435 * is updated even when the URB terminated with an error or was unlinked.
1436 *
1437 * ISO transfer status is reported in the status and actual_length fields
1438 * of the iso_frame_desc array, and the number of errors is reported in
1439 * error_count. Completion callbacks for ISO transfers will normally
1440 * (re)submit URBs to ensure a constant transfer rate.
1441 *
1442 * Note that even fields marked "public" should not be touched by the driver
1443 * when the urb is owned by the hcd, that is, since the call to
1444 * usb_submit_urb() till the entry into the completion routine.
1445 */
1446 struct urb {
1447 /* private: usb core and host controller only fields in the urb */
1448 struct kref kref; /* reference count of the URB */
1449 void *hcpriv; /* private data for host controller */
1450 atomic_t use_count; /* concurrent submissions counter */
1451 atomic_t reject; /* submissions will fail */
1452 int unlinked; /* unlink error code */
1453
1454 /* public: documented fields in the urb that can be used by drivers */
1455 struct list_head urb_list; /* list head for use by the urb's
1456 * current owner */
1457 struct list_head anchor_list; /* the URB may be anchored */
1458 struct usb_anchor *anchor;
1459 struct usb_device *dev; /* (in) pointer to associated device */
1460 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1461 unsigned int pipe; /* (in) pipe information */
1462 unsigned int stream_id; /* (in) stream ID */
1463 int status; /* (return) non-ISO status */
1464 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1465 void *transfer_buffer; /* (in) associated data buffer */
1466 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1467 struct scatterlist *sg; /* (in) scatter gather buffer list */
1468 int num_mapped_sgs; /* (internal) mapped sg entries */
1469 int num_sgs; /* (in) number of entries in the sg list */
1470 u32 transfer_buffer_length; /* (in) data buffer length */
1471 u32 actual_length; /* (return) actual transfer length */
1472 unsigned char *setup_packet; /* (in) setup packet (control only) */
1473 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1474 int start_frame; /* (modify) start frame (ISO) */
1475 int number_of_packets; /* (in) number of ISO packets */
1476 int interval; /* (modify) transfer interval
1477 * (INT/ISO) */
1478 int error_count; /* (return) number of ISO errors */
1479 void *context; /* (in) context for completion */
1480 usb_complete_t complete; /* (in) completion routine */
1481 struct usb_iso_packet_descriptor iso_frame_desc[0];
1482 /* (in) ISO ONLY */
1483 };
1484
1485 /* ----------------------------------------------------------------------- */
1486
1487 /**
1488 * usb_fill_control_urb - initializes a control urb
1489 * @urb: pointer to the urb to initialize.
1490 * @dev: pointer to the struct usb_device for this urb.
1491 * @pipe: the endpoint pipe
1492 * @setup_packet: pointer to the setup_packet buffer
1493 * @transfer_buffer: pointer to the transfer buffer
1494 * @buffer_length: length of the transfer buffer
1495 * @complete_fn: pointer to the usb_complete_t function
1496 * @context: what to set the urb context to.
1497 *
1498 * Initializes a control urb with the proper information needed to submit
1499 * it to a device.
1500 */
1501 static inline void usb_fill_control_urb(struct urb *urb,
1502 struct usb_device *dev,
1503 unsigned int pipe,
1504 unsigned char *setup_packet,
1505 void *transfer_buffer,
1506 int buffer_length,
1507 usb_complete_t complete_fn,
1508 void *context)
1509 {
1510 urb->dev = dev;
1511 urb->pipe = pipe;
1512 urb->setup_packet = setup_packet;
1513 urb->transfer_buffer = transfer_buffer;
1514 urb->transfer_buffer_length = buffer_length;
1515 urb->complete = complete_fn;
1516 urb->context = context;
1517 }
1518
1519 /**
1520 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1521 * @urb: pointer to the urb to initialize.
1522 * @dev: pointer to the struct usb_device for this urb.
1523 * @pipe: the endpoint pipe
1524 * @transfer_buffer: pointer to the transfer buffer
1525 * @buffer_length: length of the transfer buffer
1526 * @complete_fn: pointer to the usb_complete_t function
1527 * @context: what to set the urb context to.
1528 *
1529 * Initializes a bulk urb with the proper information needed to submit it
1530 * to a device.
1531 */
1532 static inline void usb_fill_bulk_urb(struct urb *urb,
1533 struct usb_device *dev,
1534 unsigned int pipe,
1535 void *transfer_buffer,
1536 int buffer_length,
1537 usb_complete_t complete_fn,
1538 void *context)
1539 {
1540 urb->dev = dev;
1541 urb->pipe = pipe;
1542 urb->transfer_buffer = transfer_buffer;
1543 urb->transfer_buffer_length = buffer_length;
1544 urb->complete = complete_fn;
1545 urb->context = context;
1546 }
1547
1548 /**
1549 * usb_fill_int_urb - macro to help initialize a interrupt urb
1550 * @urb: pointer to the urb to initialize.
1551 * @dev: pointer to the struct usb_device for this urb.
1552 * @pipe: the endpoint pipe
1553 * @transfer_buffer: pointer to the transfer buffer
1554 * @buffer_length: length of the transfer buffer
1555 * @complete_fn: pointer to the usb_complete_t function
1556 * @context: what to set the urb context to.
1557 * @interval: what to set the urb interval to, encoded like
1558 * the endpoint descriptor's bInterval value.
1559 *
1560 * Initializes a interrupt urb with the proper information needed to submit
1561 * it to a device.
1562 *
1563 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1564 * encoding of the endpoint interval, and express polling intervals in
1565 * microframes (eight per millisecond) rather than in frames (one per
1566 * millisecond).
1567 *
1568 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1569 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1570 * through to the host controller, rather than being translated into microframe
1571 * units.
1572 */
1573 static inline void usb_fill_int_urb(struct urb *urb,
1574 struct usb_device *dev,
1575 unsigned int pipe,
1576 void *transfer_buffer,
1577 int buffer_length,
1578 usb_complete_t complete_fn,
1579 void *context,
1580 int interval)
1581 {
1582 urb->dev = dev;
1583 urb->pipe = pipe;
1584 urb->transfer_buffer = transfer_buffer;
1585 urb->transfer_buffer_length = buffer_length;
1586 urb->complete = complete_fn;
1587 urb->context = context;
1588
1589 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1590 /* make sure interval is within allowed range */
1591 interval = clamp(interval, 1, 16);
1592
1593 urb->interval = 1 << (interval - 1);
1594 } else {
1595 urb->interval = interval;
1596 }
1597
1598 urb->start_frame = -1;
1599 }
1600
1601 extern void usb_init_urb(struct urb *urb);
1602 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1603 extern void usb_free_urb(struct urb *urb);
1604 #define usb_put_urb usb_free_urb
1605 extern struct urb *usb_get_urb(struct urb *urb);
1606 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1607 extern int usb_unlink_urb(struct urb *urb);
1608 extern void usb_kill_urb(struct urb *urb);
1609 extern void usb_poison_urb(struct urb *urb);
1610 extern void usb_unpoison_urb(struct urb *urb);
1611 extern void usb_block_urb(struct urb *urb);
1612 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1613 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1614 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1615 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1616 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1617 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1618 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1619 extern void usb_unanchor_urb(struct urb *urb);
1620 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1621 unsigned int timeout);
1622 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1623 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1624 extern int usb_anchor_empty(struct usb_anchor *anchor);
1625
1626 #define usb_unblock_urb usb_unpoison_urb
1627
1628 /**
1629 * usb_urb_dir_in - check if an URB describes an IN transfer
1630 * @urb: URB to be checked
1631 *
1632 * Return: 1 if @urb describes an IN transfer (device-to-host),
1633 * otherwise 0.
1634 */
1635 static inline int usb_urb_dir_in(struct urb *urb)
1636 {
1637 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1638 }
1639
1640 /**
1641 * usb_urb_dir_out - check if an URB describes an OUT transfer
1642 * @urb: URB to be checked
1643 *
1644 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1645 * otherwise 0.
1646 */
1647 static inline int usb_urb_dir_out(struct urb *urb)
1648 {
1649 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1650 }
1651
1652 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1653 gfp_t mem_flags, dma_addr_t *dma);
1654 void usb_free_coherent(struct usb_device *dev, size_t size,
1655 void *addr, dma_addr_t dma);
1656
1657 #if 0
1658 struct urb *usb_buffer_map(struct urb *urb);
1659 void usb_buffer_dmasync(struct urb *urb);
1660 void usb_buffer_unmap(struct urb *urb);
1661 #endif
1662
1663 struct scatterlist;
1664 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1665 struct scatterlist *sg, int nents);
1666 #if 0
1667 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1668 struct scatterlist *sg, int n_hw_ents);
1669 #endif
1670 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1671 struct scatterlist *sg, int n_hw_ents);
1672
1673 /*-------------------------------------------------------------------*
1674 * SYNCHRONOUS CALL SUPPORT *
1675 *-------------------------------------------------------------------*/
1676
1677 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1678 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1679 void *data, __u16 size, int timeout);
1680 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1681 void *data, int len, int *actual_length, int timeout);
1682 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1683 void *data, int len, int *actual_length,
1684 int timeout);
1685
1686 /* wrappers around usb_control_msg() for the most common standard requests */
1687 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1688 unsigned char descindex, void *buf, int size);
1689 extern int usb_get_status(struct usb_device *dev,
1690 int type, int target, void *data);
1691 extern int usb_string(struct usb_device *dev, int index,
1692 char *buf, size_t size);
1693
1694 /* wrappers that also update important state inside usbcore */
1695 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1696 extern int usb_reset_configuration(struct usb_device *dev);
1697 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1698 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1699
1700 /* this request isn't really synchronous, but it belongs with the others */
1701 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1702
1703 /* choose and set configuration for device */
1704 extern int usb_choose_configuration(struct usb_device *udev);
1705 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1706
1707 /*
1708 * timeouts, in milliseconds, used for sending/receiving control messages
1709 * they typically complete within a few frames (msec) after they're issued
1710 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1711 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1712 */
1713 #define USB_CTRL_GET_TIMEOUT 5000
1714 #define USB_CTRL_SET_TIMEOUT 5000
1715
1716
1717 /**
1718 * struct usb_sg_request - support for scatter/gather I/O
1719 * @status: zero indicates success, else negative errno
1720 * @bytes: counts bytes transferred.
1721 *
1722 * These requests are initialized using usb_sg_init(), and then are used
1723 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1724 * members of the request object aren't for driver access.
1725 *
1726 * The status and bytecount values are valid only after usb_sg_wait()
1727 * returns. If the status is zero, then the bytecount matches the total
1728 * from the request.
1729 *
1730 * After an error completion, drivers may need to clear a halt condition
1731 * on the endpoint.
1732 */
1733 struct usb_sg_request {
1734 int status;
1735 size_t bytes;
1736
1737 /* private:
1738 * members below are private to usbcore,
1739 * and are not provided for driver access!
1740 */
1741 spinlock_t lock;
1742
1743 struct usb_device *dev;
1744 int pipe;
1745
1746 int entries;
1747 struct urb **urbs;
1748
1749 int count;
1750 struct completion complete;
1751 };
1752
1753 int usb_sg_init(
1754 struct usb_sg_request *io,
1755 struct usb_device *dev,
1756 unsigned pipe,
1757 unsigned period,
1758 struct scatterlist *sg,
1759 int nents,
1760 size_t length,
1761 gfp_t mem_flags
1762 );
1763 void usb_sg_cancel(struct usb_sg_request *io);
1764 void usb_sg_wait(struct usb_sg_request *io);
1765
1766
1767 /* ----------------------------------------------------------------------- */
1768
1769 /*
1770 * For various legacy reasons, Linux has a small cookie that's paired with
1771 * a struct usb_device to identify an endpoint queue. Queue characteristics
1772 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1773 * an unsigned int encoded as:
1774 *
1775 * - direction: bit 7 (0 = Host-to-Device [Out],
1776 * 1 = Device-to-Host [In] ...
1777 * like endpoint bEndpointAddress)
1778 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1779 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1780 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1781 * 10 = control, 11 = bulk)
1782 *
1783 * Given the device address and endpoint descriptor, pipes are redundant.
1784 */
1785
1786 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1787 /* (yet ... they're the values used by usbfs) */
1788 #define PIPE_ISOCHRONOUS 0
1789 #define PIPE_INTERRUPT 1
1790 #define PIPE_CONTROL 2
1791 #define PIPE_BULK 3
1792
1793 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1794 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1795
1796 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1797 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1798
1799 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1800 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1801 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1802 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1803 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1804
1805 static inline unsigned int __create_pipe(struct usb_device *dev,
1806 unsigned int endpoint)
1807 {
1808 return (dev->devnum << 8) | (endpoint << 15);
1809 }
1810
1811 /* Create various pipes... */
1812 #define usb_sndctrlpipe(dev, endpoint) \
1813 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1814 #define usb_rcvctrlpipe(dev, endpoint) \
1815 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1816 #define usb_sndisocpipe(dev, endpoint) \
1817 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1818 #define usb_rcvisocpipe(dev, endpoint) \
1819 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1820 #define usb_sndbulkpipe(dev, endpoint) \
1821 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1822 #define usb_rcvbulkpipe(dev, endpoint) \
1823 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1824 #define usb_sndintpipe(dev, endpoint) \
1825 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1826 #define usb_rcvintpipe(dev, endpoint) \
1827 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1828
1829 static inline struct usb_host_endpoint *
1830 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1831 {
1832 struct usb_host_endpoint **eps;
1833 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1834 return eps[usb_pipeendpoint(pipe)];
1835 }
1836
1837 /*-------------------------------------------------------------------------*/
1838
1839 static inline __u16
1840 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1841 {
1842 struct usb_host_endpoint *ep;
1843 unsigned epnum = usb_pipeendpoint(pipe);
1844
1845 if (is_out) {
1846 WARN_ON(usb_pipein(pipe));
1847 ep = udev->ep_out[epnum];
1848 } else {
1849 WARN_ON(usb_pipeout(pipe));
1850 ep = udev->ep_in[epnum];
1851 }
1852 if (!ep)
1853 return 0;
1854
1855 /* NOTE: only 0x07ff bits are for packet size... */
1856 return usb_endpoint_maxp(&ep->desc);
1857 }
1858
1859 /* ----------------------------------------------------------------------- */
1860
1861 /* translate USB error codes to codes user space understands */
1862 static inline int usb_translate_errors(int error_code)
1863 {
1864 switch (error_code) {
1865 case 0:
1866 case -ENOMEM:
1867 case -ENODEV:
1868 case -EOPNOTSUPP:
1869 return error_code;
1870 default:
1871 return -EIO;
1872 }
1873 }
1874
1875 /* Events from the usb core */
1876 #define USB_DEVICE_ADD 0x0001
1877 #define USB_DEVICE_REMOVE 0x0002
1878 #define USB_BUS_ADD 0x0003
1879 #define USB_BUS_REMOVE 0x0004
1880 extern void usb_register_notify(struct notifier_block *nb);
1881 extern void usb_unregister_notify(struct notifier_block *nb);
1882
1883 /* debugfs stuff */
1884 extern struct dentry *usb_debug_root;
1885
1886 /* LED triggers */
1887 enum usb_led_event {
1888 USB_LED_EVENT_HOST = 0,
1889 USB_LED_EVENT_GADGET = 1,
1890 };
1891
1892 #ifdef CONFIG_USB_LED_TRIG
1893 extern void usb_led_activity(enum usb_led_event ev);
1894 #else
1895 static inline void usb_led_activity(enum usb_led_event ev) {}
1896 #endif
1897
1898 #endif /* __KERNEL__ */
1899
1900 #endif 1 /*
2 * LIRC base driver
3 *
4 * by Artur Lipowski <alipowski@interia.pl>
5 * This code is licensed under GNU GPL
6 *
7 */
8
9 #ifndef _LINUX_LIRC_DEV_H
10 #define _LINUX_LIRC_DEV_H
11
12 #define MAX_IRCTL_DEVICES 8
13 #define BUFLEN 16
14
15 #define mod(n, div) ((n) % (div))
16
17 #include <linux/slab.h>
18 #include <linux/fs.h>
19 #include <linux/ioctl.h>
20 #include <linux/poll.h>
21 #include <linux/kfifo.h>
22 #include <media/lirc.h>
23
24 struct lirc_buffer {
25 wait_queue_head_t wait_poll;
26 spinlock_t fifo_lock;
27 unsigned int chunk_size;
28 unsigned int size; /* in chunks */
29 /* Using chunks instead of bytes pretends to simplify boundary checking
30 * And should allow for some performance fine tunning later */
31 struct kfifo fifo;
32 };
33
34 static inline void lirc_buffer_clear(struct lirc_buffer *buf)
35 {
36 unsigned long flags;
37
38 if (kfifo_initialized(&buf->fifo)) {
39 spin_lock_irqsave(&buf->fifo_lock, flags);
40 kfifo_reset(&buf->fifo);
41 spin_unlock_irqrestore(&buf->fifo_lock, flags);
42 } else
43 WARN(1, "calling %s on an uninitialized lirc_buffer\n",
44 __func__);
45 }
46
47 static inline int lirc_buffer_init(struct lirc_buffer *buf,
48 unsigned int chunk_size,
49 unsigned int size)
50 {
51 int ret;
52
53 init_waitqueue_head(&buf->wait_poll);
54 spin_lock_init(&buf->fifo_lock);
55 buf->chunk_size = chunk_size;
56 buf->size = size;
57 ret = kfifo_alloc(&buf->fifo, size * chunk_size, GFP_KERNEL);
58
59 return ret;
60 }
61
62 static inline void lirc_buffer_free(struct lirc_buffer *buf)
63 {
64 if (kfifo_initialized(&buf->fifo)) {
65 kfifo_free(&buf->fifo);
66 } else
67 WARN(1, "calling %s on an uninitialized lirc_buffer\n",
68 __func__);
69 }
70
71 static inline int lirc_buffer_len(struct lirc_buffer *buf)
72 {
73 int len;
74 unsigned long flags;
75
76 spin_lock_irqsave(&buf->fifo_lock, flags);
77 len = kfifo_len(&buf->fifo);
78 spin_unlock_irqrestore(&buf->fifo_lock, flags);
79
80 return len;
81 }
82
83 static inline int lirc_buffer_full(struct lirc_buffer *buf)
84 {
85 return lirc_buffer_len(buf) == buf->size * buf->chunk_size;
86 }
87
88 static inline int lirc_buffer_empty(struct lirc_buffer *buf)
89 {
90 return !lirc_buffer_len(buf);
91 }
92
93 static inline int lirc_buffer_available(struct lirc_buffer *buf)
94 {
95 return buf->size - (lirc_buffer_len(buf) / buf->chunk_size);
96 }
97
98 static inline unsigned int lirc_buffer_read(struct lirc_buffer *buf,
99 unsigned char *dest)
100 {
101 unsigned int ret = 0;
102
103 if (lirc_buffer_len(buf) >= buf->chunk_size)
104 ret = kfifo_out_locked(&buf->fifo, dest, buf->chunk_size,
105 &buf->fifo_lock);
106 return ret;
107
108 }
109
110 static inline unsigned int lirc_buffer_write(struct lirc_buffer *buf,
111 unsigned char *orig)
112 {
113 unsigned int ret;
114
115 ret = kfifo_in_locked(&buf->fifo, orig, buf->chunk_size,
116 &buf->fifo_lock);
117
118 return ret;
119 }
120
121 struct lirc_driver {
122 char name[40];
123 int minor;
124 __u32 code_length;
125 unsigned int buffer_size; /* in chunks holding one code each */
126 int sample_rate;
127 __u32 features;
128
129 unsigned int chunk_size;
130
131 void *data;
132 int min_timeout;
133 int max_timeout;
134 int (*add_to_buf) (void *data, struct lirc_buffer *buf);
135 struct lirc_buffer *rbuf;
136 int (*set_use_inc) (void *data);
137 void (*set_use_dec) (void *data);
138 struct rc_dev *rdev;
139 const struct file_operations *fops;
140 struct device *dev;
141 struct module *owner;
142 };
143
144 /* name:
145 * this string will be used for logs
146 *
147 * minor:
148 * indicates minor device (/dev/lirc) number for registered driver
149 * if caller fills it with negative value, then the first free minor
150 * number will be used (if available)
151 *
152 * code_length:
153 * length of the remote control key code expressed in bits
154 *
155 * sample_rate:
156 *
157 * data:
158 * it may point to any driver data and this pointer will be passed to
159 * all callback functions
160 *
161 * add_to_buf:
162 * add_to_buf will be called after specified period of the time or
163 * triggered by the external event, this behavior depends on value of
164 * the sample_rate this function will be called in user context. This
165 * routine should return 0 if data was added to the buffer and
166 * -ENODATA if none was available. This should add some number of bits
167 * evenly divisible by code_length to the buffer
168 *
169 * rbuf:
170 * if not NULL, it will be used as a read buffer, you will have to
171 * write to the buffer by other means, like irq's (see also
172 * lirc_serial.c).
173 *
174 * set_use_inc:
175 * set_use_inc will be called after device is opened
176 *
177 * set_use_dec:
178 * set_use_dec will be called after device is closed
179 *
180 * fops:
181 * file_operations for drivers which don't fit the current driver model.
182 *
183 * Some ioctl's can be directly handled by lirc_dev if the driver's
184 * ioctl function is NULL or if it returns -ENOIOCTLCMD (see also
185 * lirc_serial.c).
186 *
187 * owner:
188 * the module owning this struct
189 *
190 */
191
192
193 /* following functions can be called ONLY from user context
194 *
195 * returns negative value on error or minor number
196 * of the registered device if success
197 * contents of the structure pointed by p is copied
198 */
199 extern int lirc_register_driver(struct lirc_driver *d);
200
201 /* returns negative value on error or 0 if success
202 */
203 extern int lirc_unregister_driver(int minor);
204
205 /* Returns the private data stored in the lirc_driver
206 * associated with the given device file pointer.
207 */
208 void *lirc_get_pdata(struct file *file);
209
210 /* default file operations
211 * used by drivers if they override only some operations
212 */
213 int lirc_dev_fop_open(struct inode *inode, struct file *file);
214 int lirc_dev_fop_close(struct inode *inode, struct file *file);
215 unsigned int lirc_dev_fop_poll(struct file *file, poll_table *wait);
216 long lirc_dev_fop_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
217 ssize_t lirc_dev_fop_read(struct file *file, char __user *buffer, size_t length,
218 loff_t *ppos);
219 ssize_t lirc_dev_fop_write(struct file *file, const char __user *buffer,
220 size_t length, loff_t *ppos);
221
222 #endif 1 /*
2 * This file holds USB constants and structures that are needed for
3 * USB device APIs. These are used by the USB device model, which is
4 * defined in chapter 9 of the USB 2.0 specification and in the
5 * Wireless USB 1.0 (spread around). Linux has several APIs in C that
6 * need these:
7 *
8 * - the master/host side Linux-USB kernel driver API;
9 * - the "usbfs" user space API; and
10 * - the Linux "gadget" slave/device/peripheral side driver API.
11 *
12 * USB 2.0 adds an additional "On The Go" (OTG) mode, which lets systems
13 * act either as a USB master/host or as a USB slave/device. That means
14 * the master and slave side APIs benefit from working well together.
15 *
16 * There's also "Wireless USB", using low power short range radios for
17 * peripheral interconnection but otherwise building on the USB framework.
18 *
19 * Note all descriptors are declared '__attribute__((packed))' so that:
20 *
21 * [a] they never get padded, either internally (USB spec writers
22 * probably handled that) or externally;
23 *
24 * [b] so that accessing bigger-than-a-bytes fields will never
25 * generate bus errors on any platform, even when the location of
26 * its descriptor inside a bundle isn't "naturally aligned", and
27 *
28 * [c] for consistency, removing all doubt even when it appears to
29 * someone that the two other points are non-issues for that
30 * particular descriptor type.
31 */
32
33 #ifndef _UAPI__LINUX_USB_CH9_H
34 #define _UAPI__LINUX_USB_CH9_H
35
36 #include <linux/types.h> /* __u8 etc */
37 #include <asm/byteorder.h> /* le16_to_cpu */
38
39 /*-------------------------------------------------------------------------*/
40
41 /* CONTROL REQUEST SUPPORT */
42
43 /*
44 * USB directions
45 *
46 * This bit flag is used in endpoint descriptors' bEndpointAddress field.
47 * It's also one of three fields in control requests bRequestType.
48 */
49 #define USB_DIR_OUT 0 /* to device */
50 #define USB_DIR_IN 0x80 /* to host */
51
52 /*
53 * USB types, the second of three bRequestType fields
54 */
55 #define USB_TYPE_MASK (0x03 << 5)
56 #define USB_TYPE_STANDARD (0x00 << 5)
57 #define USB_TYPE_CLASS (0x01 << 5)
58 #define USB_TYPE_VENDOR (0x02 << 5)
59 #define USB_TYPE_RESERVED (0x03 << 5)
60
61 /*
62 * USB recipients, the third of three bRequestType fields
63 */
64 #define USB_RECIP_MASK 0x1f
65 #define USB_RECIP_DEVICE 0x00
66 #define USB_RECIP_INTERFACE 0x01
67 #define USB_RECIP_ENDPOINT 0x02
68 #define USB_RECIP_OTHER 0x03
69 /* From Wireless USB 1.0 */
70 #define USB_RECIP_PORT 0x04
71 #define USB_RECIP_RPIPE 0x05
72
73 /*
74 * Standard requests, for the bRequest field of a SETUP packet.
75 *
76 * These are qualified by the bRequestType field, so that for example
77 * TYPE_CLASS or TYPE_VENDOR specific feature flags could be retrieved
78 * by a GET_STATUS request.
79 */
80 #define USB_REQ_GET_STATUS 0x00
81 #define USB_REQ_CLEAR_FEATURE 0x01
82 #define USB_REQ_SET_FEATURE 0x03
83 #define USB_REQ_SET_ADDRESS 0x05
84 #define USB_REQ_GET_DESCRIPTOR 0x06
85 #define USB_REQ_SET_DESCRIPTOR 0x07
86 #define USB_REQ_GET_CONFIGURATION 0x08
87 #define USB_REQ_SET_CONFIGURATION 0x09
88 #define USB_REQ_GET_INTERFACE 0x0A
89 #define USB_REQ_SET_INTERFACE 0x0B
90 #define USB_REQ_SYNCH_FRAME 0x0C
91 #define USB_REQ_SET_SEL 0x30
92 #define USB_REQ_SET_ISOCH_DELAY 0x31
93
94 #define USB_REQ_SET_ENCRYPTION 0x0D /* Wireless USB */
95 #define USB_REQ_GET_ENCRYPTION 0x0E
96 #define USB_REQ_RPIPE_ABORT 0x0E
97 #define USB_REQ_SET_HANDSHAKE 0x0F
98 #define USB_REQ_RPIPE_RESET 0x0F
99 #define USB_REQ_GET_HANDSHAKE 0x10
100 #define USB_REQ_SET_CONNECTION 0x11
101 #define USB_REQ_SET_SECURITY_DATA 0x12
102 #define USB_REQ_GET_SECURITY_DATA 0x13
103 #define USB_REQ_SET_WUSB_DATA 0x14
104 #define USB_REQ_LOOPBACK_DATA_WRITE 0x15
105 #define USB_REQ_LOOPBACK_DATA_READ 0x16
106 #define USB_REQ_SET_INTERFACE_DS 0x17
107
108 /* The Link Power Management (LPM) ECN defines USB_REQ_TEST_AND_SET command,
109 * used by hubs to put ports into a new L1 suspend state, except that it
110 * forgot to define its number ...
111 */
112
113 /*
114 * USB feature flags are written using USB_REQ_{CLEAR,SET}_FEATURE, and
115 * are read as a bit array returned by USB_REQ_GET_STATUS. (So there
116 * are at most sixteen features of each type.) Hubs may also support a
117 * new USB_REQ_TEST_AND_SET_FEATURE to put ports into L1 suspend.
118 */
119 #define USB_DEVICE_SELF_POWERED 0 /* (read only) */
120 #define USB_DEVICE_REMOTE_WAKEUP 1 /* dev may initiate wakeup */
121 #define USB_DEVICE_TEST_MODE 2 /* (wired high speed only) */
122 #define USB_DEVICE_BATTERY 2 /* (wireless) */
123 #define USB_DEVICE_B_HNP_ENABLE 3 /* (otg) dev may initiate HNP */
124 #define USB_DEVICE_WUSB_DEVICE 3 /* (wireless)*/
125 #define USB_DEVICE_A_HNP_SUPPORT 4 /* (otg) RH port supports HNP */
126 #define USB_DEVICE_A_ALT_HNP_SUPPORT 5 /* (otg) other RH port does */
127 #define USB_DEVICE_DEBUG_MODE 6 /* (special devices only) */
128
129 /*
130 * Test Mode Selectors
131 * See USB 2.0 spec Table 9-7
132 */
133 #define TEST_J 1
134 #define TEST_K 2
135 #define TEST_SE0_NAK 3
136 #define TEST_PACKET 4
137 #define TEST_FORCE_EN 5
138
139 /*
140 * New Feature Selectors as added by USB 3.0
141 * See USB 3.0 spec Table 9-7
142 */
143 #define USB_DEVICE_U1_ENABLE 48 /* dev may initiate U1 transition */
144 #define USB_DEVICE_U2_ENABLE 49 /* dev may initiate U2 transition */
145 #define USB_DEVICE_LTM_ENABLE 50 /* dev may send LTM */
146 #define USB_INTRF_FUNC_SUSPEND 0 /* function suspend */
147
148 #define USB_INTR_FUNC_SUSPEND_OPT_MASK 0xFF00
149 /*
150 * Suspend Options, Table 9-8 USB 3.0 spec
151 */
152 #define USB_INTRF_FUNC_SUSPEND_LP (1 << (8 + 0))
153 #define USB_INTRF_FUNC_SUSPEND_RW (1 << (8 + 1))
154
155 /*
156 * Interface status, Figure 9-5 USB 3.0 spec
157 */
158 #define USB_INTRF_STAT_FUNC_RW_CAP 1
159 #define USB_INTRF_STAT_FUNC_RW 2
160
161 #define USB_ENDPOINT_HALT 0 /* IN/OUT will STALL */
162
163 /* Bit array elements as returned by the USB_REQ_GET_STATUS request. */
164 #define USB_DEV_STAT_U1_ENABLED 2 /* transition into U1 state */
165 #define USB_DEV_STAT_U2_ENABLED 3 /* transition into U2 state */
166 #define USB_DEV_STAT_LTM_ENABLED 4 /* Latency tolerance messages */
167
168 /**
169 * struct usb_ctrlrequest - SETUP data for a USB device control request
170 * @bRequestType: matches the USB bmRequestType field
171 * @bRequest: matches the USB bRequest field
172 * @wValue: matches the USB wValue field (le16 byte order)
173 * @wIndex: matches the USB wIndex field (le16 byte order)
174 * @wLength: matches the USB wLength field (le16 byte order)
175 *
176 * This structure is used to send control requests to a USB device. It matches
177 * the different fields of the USB 2.0 Spec section 9.3, table 9-2. See the
178 * USB spec for a fuller description of the different fields, and what they are
179 * used for.
180 *
181 * Note that the driver for any interface can issue control requests.
182 * For most devices, interfaces don't coordinate with each other, so
183 * such requests may be made at any time.
184 */
185 struct usb_ctrlrequest {
186 __u8 bRequestType;
187 __u8 bRequest;
188 __le16 wValue;
189 __le16 wIndex;
190 __le16 wLength;
191 } __attribute__ ((packed));
192
193 /*-------------------------------------------------------------------------*/
194
195 /*
196 * STANDARD DESCRIPTORS ... as returned by GET_DESCRIPTOR, or
197 * (rarely) accepted by SET_DESCRIPTOR.
198 *
199 * Note that all multi-byte values here are encoded in little endian
200 * byte order "on the wire". Within the kernel and when exposed
201 * through the Linux-USB APIs, they are not converted to cpu byte
202 * order; it is the responsibility of the client code to do this.
203 * The single exception is when device and configuration descriptors (but
204 * not other descriptors) are read from usbfs (i.e. /proc/bus/usb/BBB/DDD);
205 * in this case the fields are converted to host endianness by the kernel.
206 */
207
208 /*
209 * Descriptor types ... USB 2.0 spec table 9.5
210 */
211 #define USB_DT_DEVICE 0x01
212 #define USB_DT_CONFIG 0x02
213 #define USB_DT_STRING 0x03
214 #define USB_DT_INTERFACE 0x04
215 #define USB_DT_ENDPOINT 0x05
216 #define USB_DT_DEVICE_QUALIFIER 0x06
217 #define USB_DT_OTHER_SPEED_CONFIG 0x07
218 #define USB_DT_INTERFACE_POWER 0x08
219 /* these are from a minor usb 2.0 revision (ECN) */
220 #define USB_DT_OTG 0x09
221 #define USB_DT_DEBUG 0x0a
222 #define USB_DT_INTERFACE_ASSOCIATION 0x0b
223 /* these are from the Wireless USB spec */
224 #define USB_DT_SECURITY 0x0c
225 #define USB_DT_KEY 0x0d
226 #define USB_DT_ENCRYPTION_TYPE 0x0e
227 #define USB_DT_BOS 0x0f
228 #define USB_DT_DEVICE_CAPABILITY 0x10
229 #define USB_DT_WIRELESS_ENDPOINT_COMP 0x11
230 #define USB_DT_WIRE_ADAPTER 0x21
231 #define USB_DT_RPIPE 0x22
232 #define USB_DT_CS_RADIO_CONTROL 0x23
233 /* From the T10 UAS specification */
234 #define USB_DT_PIPE_USAGE 0x24
235 /* From the USB 3.0 spec */
236 #define USB_DT_SS_ENDPOINT_COMP 0x30
237
238 /* Conventional codes for class-specific descriptors. The convention is
239 * defined in the USB "Common Class" Spec (3.11). Individual class specs
240 * are authoritative for their usage, not the "common class" writeup.
241 */
242 #define USB_DT_CS_DEVICE (USB_TYPE_CLASS | USB_DT_DEVICE)
243 #define USB_DT_CS_CONFIG (USB_TYPE_CLASS | USB_DT_CONFIG)
244 #define USB_DT_CS_STRING (USB_TYPE_CLASS | USB_DT_STRING)
245 #define USB_DT_CS_INTERFACE (USB_TYPE_CLASS | USB_DT_INTERFACE)
246 #define USB_DT_CS_ENDPOINT (USB_TYPE_CLASS | USB_DT_ENDPOINT)
247
248 /* All standard descriptors have these 2 fields at the beginning */
249 struct usb_descriptor_header {
250 __u8 bLength;
251 __u8 bDescriptorType;
252 } __attribute__ ((packed));
253
254
255 /*-------------------------------------------------------------------------*/
256
257 /* USB_DT_DEVICE: Device descriptor */
258 struct usb_device_descriptor {
259 __u8 bLength;
260 __u8 bDescriptorType;
261
262 __le16 bcdUSB;
263 __u8 bDeviceClass;
264 __u8 bDeviceSubClass;
265 __u8 bDeviceProtocol;
266 __u8 bMaxPacketSize0;
267 __le16 idVendor;
268 __le16 idProduct;
269 __le16 bcdDevice;
270 __u8 iManufacturer;
271 __u8 iProduct;
272 __u8 iSerialNumber;
273 __u8 bNumConfigurations;
274 } __attribute__ ((packed));
275
276 #define USB_DT_DEVICE_SIZE 18
277
278
279 /*
280 * Device and/or Interface Class codes
281 * as found in bDeviceClass or bInterfaceClass
282 * and defined by www.usb.org documents
283 */
284 #define USB_CLASS_PER_INTERFACE 0 /* for DeviceClass */
285 #define USB_CLASS_AUDIO 1
286 #define USB_CLASS_COMM 2
287 #define USB_CLASS_HID 3
288 #define USB_CLASS_PHYSICAL 5
289 #define USB_CLASS_STILL_IMAGE 6
290 #define USB_CLASS_PRINTER 7
291 #define USB_CLASS_MASS_STORAGE 8
292 #define USB_CLASS_HUB 9
293 #define USB_CLASS_CDC_DATA 0x0a
294 #define USB_CLASS_CSCID 0x0b /* chip+ smart card */
295 #define USB_CLASS_CONTENT_SEC 0x0d /* content security */
296 #define USB_CLASS_VIDEO 0x0e
297 #define USB_CLASS_WIRELESS_CONTROLLER 0xe0
298 #define USB_CLASS_MISC 0xef
299 #define USB_CLASS_APP_SPEC 0xfe
300 #define USB_CLASS_VENDOR_SPEC 0xff
301
302 #define USB_SUBCLASS_VENDOR_SPEC 0xff
303
304 /*-------------------------------------------------------------------------*/
305
306 /* USB_DT_CONFIG: Configuration descriptor information.
307 *
308 * USB_DT_OTHER_SPEED_CONFIG is the same descriptor, except that the
309 * descriptor type is different. Highspeed-capable devices can look
310 * different depending on what speed they're currently running. Only
311 * devices with a USB_DT_DEVICE_QUALIFIER have any OTHER_SPEED_CONFIG
312 * descriptors.
313 */
314 struct usb_config_descriptor {
315 __u8 bLength;
316 __u8 bDescriptorType;
317
318 __le16 wTotalLength;
319 __u8 bNumInterfaces;
320 __u8 bConfigurationValue;
321 __u8 iConfiguration;
322 __u8 bmAttributes;
323 __u8 bMaxPower;
324 } __attribute__ ((packed));
325
326 #define USB_DT_CONFIG_SIZE 9
327
328 /* from config descriptor bmAttributes */
329 #define USB_CONFIG_ATT_ONE (1 << 7) /* must be set */
330 #define USB_CONFIG_ATT_SELFPOWER (1 << 6) /* self powered */
331 #define USB_CONFIG_ATT_WAKEUP (1 << 5) /* can wakeup */
332 #define USB_CONFIG_ATT_BATTERY (1 << 4) /* battery powered */
333
334 /*-------------------------------------------------------------------------*/
335
336 /* USB_DT_STRING: String descriptor */
337 struct usb_string_descriptor {
338 __u8 bLength;
339 __u8 bDescriptorType;
340
341 __le16 wData[1]; /* UTF-16LE encoded */
342 } __attribute__ ((packed));
343
344 /* note that "string" zero is special, it holds language codes that
345 * the device supports, not Unicode characters.
346 */
347
348 /*-------------------------------------------------------------------------*/
349
350 /* USB_DT_INTERFACE: Interface descriptor */
351 struct usb_interface_descriptor {
352 __u8 bLength;
353 __u8 bDescriptorType;
354
355 __u8 bInterfaceNumber;
356 __u8 bAlternateSetting;
357 __u8 bNumEndpoints;
358 __u8 bInterfaceClass;
359 __u8 bInterfaceSubClass;
360 __u8 bInterfaceProtocol;
361 __u8 iInterface;
362 } __attribute__ ((packed));
363
364 #define USB_DT_INTERFACE_SIZE 9
365
366 /*-------------------------------------------------------------------------*/
367
368 /* USB_DT_ENDPOINT: Endpoint descriptor */
369 struct usb_endpoint_descriptor {
370 __u8 bLength;
371 __u8 bDescriptorType;
372
373 __u8 bEndpointAddress;
374 __u8 bmAttributes;
375 __le16 wMaxPacketSize;
376 __u8 bInterval;
377
378 /* NOTE: these two are _only_ in audio endpoints. */
379 /* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */
380 __u8 bRefresh;
381 __u8 bSynchAddress;
382 } __attribute__ ((packed));
383
384 #define USB_DT_ENDPOINT_SIZE 7
385 #define USB_DT_ENDPOINT_AUDIO_SIZE 9 /* Audio extension */
386
387
388 /*
389 * Endpoints
390 */
391 #define USB_ENDPOINT_NUMBER_MASK 0x0f /* in bEndpointAddress */
392 #define USB_ENDPOINT_DIR_MASK 0x80
393
394 #define USB_ENDPOINT_XFERTYPE_MASK 0x03 /* in bmAttributes */
395 #define USB_ENDPOINT_XFER_CONTROL 0
396 #define USB_ENDPOINT_XFER_ISOC 1
397 #define USB_ENDPOINT_XFER_BULK 2
398 #define USB_ENDPOINT_XFER_INT 3
399 #define USB_ENDPOINT_MAX_ADJUSTABLE 0x80
400
401 /* The USB 3.0 spec redefines bits 5:4 of bmAttributes as interrupt ep type. */
402 #define USB_ENDPOINT_INTRTYPE 0x30
403 #define USB_ENDPOINT_INTR_PERIODIC (0 << 4)
404 #define USB_ENDPOINT_INTR_NOTIFICATION (1 << 4)
405
406 #define USB_ENDPOINT_SYNCTYPE 0x0c
407 #define USB_ENDPOINT_SYNC_NONE (0 << 2)
408 #define USB_ENDPOINT_SYNC_ASYNC (1 << 2)
409 #define USB_ENDPOINT_SYNC_ADAPTIVE (2 << 2)
410 #define USB_ENDPOINT_SYNC_SYNC (3 << 2)
411
412 #define USB_ENDPOINT_USAGE_MASK 0x30
413 #define USB_ENDPOINT_USAGE_DATA 0x00
414 #define USB_ENDPOINT_USAGE_FEEDBACK 0x10
415 #define USB_ENDPOINT_USAGE_IMPLICIT_FB 0x20 /* Implicit feedback Data endpoint */
416
417 /*-------------------------------------------------------------------------*/
418
419 /**
420 * usb_endpoint_num - get the endpoint's number
421 * @epd: endpoint to be checked
422 *
423 * Returns @epd's number: 0 to 15.
424 */
425 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
426 {
427 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
428 }
429
430 /**
431 * usb_endpoint_type - get the endpoint's transfer type
432 * @epd: endpoint to be checked
433 *
434 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
435 * to @epd's transfer type.
436 */
437 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
438 {
439 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
440 }
441
442 /**
443 * usb_endpoint_dir_in - check if the endpoint has IN direction
444 * @epd: endpoint to be checked
445 *
446 * Returns true if the endpoint is of type IN, otherwise it returns false.
447 */
448 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
449 {
450 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
451 }
452
453 /**
454 * usb_endpoint_dir_out - check if the endpoint has OUT direction
455 * @epd: endpoint to be checked
456 *
457 * Returns true if the endpoint is of type OUT, otherwise it returns false.
458 */
459 static inline int usb_endpoint_dir_out(
460 const struct usb_endpoint_descriptor *epd)
461 {
462 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
463 }
464
465 /**
466 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
467 * @epd: endpoint to be checked
468 *
469 * Returns true if the endpoint is of type bulk, otherwise it returns false.
470 */
471 static inline int usb_endpoint_xfer_bulk(
472 const struct usb_endpoint_descriptor *epd)
473 {
474 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
475 USB_ENDPOINT_XFER_BULK);
476 }
477
478 /**
479 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
480 * @epd: endpoint to be checked
481 *
482 * Returns true if the endpoint is of type control, otherwise it returns false.
483 */
484 static inline int usb_endpoint_xfer_control(
485 const struct usb_endpoint_descriptor *epd)
486 {
487 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
488 USB_ENDPOINT_XFER_CONTROL);
489 }
490
491 /**
492 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
493 * @epd: endpoint to be checked
494 *
495 * Returns true if the endpoint is of type interrupt, otherwise it returns
496 * false.
497 */
498 static inline int usb_endpoint_xfer_int(
499 const struct usb_endpoint_descriptor *epd)
500 {
501 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
502 USB_ENDPOINT_XFER_INT);
503 }
504
505 /**
506 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
507 * @epd: endpoint to be checked
508 *
509 * Returns true if the endpoint is of type isochronous, otherwise it returns
510 * false.
511 */
512 static inline int usb_endpoint_xfer_isoc(
513 const struct usb_endpoint_descriptor *epd)
514 {
515 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
516 USB_ENDPOINT_XFER_ISOC);
517 }
518
519 /**
520 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
521 * @epd: endpoint to be checked
522 *
523 * Returns true if the endpoint has bulk transfer type and IN direction,
524 * otherwise it returns false.
525 */
526 static inline int usb_endpoint_is_bulk_in(
527 const struct usb_endpoint_descriptor *epd)
528 {
529 return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd);
530 }
531
532 /**
533 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
534 * @epd: endpoint to be checked
535 *
536 * Returns true if the endpoint has bulk transfer type and OUT direction,
537 * otherwise it returns false.
538 */
539 static inline int usb_endpoint_is_bulk_out(
540 const struct usb_endpoint_descriptor *epd)
541 {
542 return usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd);
543 }
544
545 /**
546 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
547 * @epd: endpoint to be checked
548 *
549 * Returns true if the endpoint has interrupt transfer type and IN direction,
550 * otherwise it returns false.
551 */
552 static inline int usb_endpoint_is_int_in(
553 const struct usb_endpoint_descriptor *epd)
554 {
555 return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd);
556 }
557
558 /**
559 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
560 * @epd: endpoint to be checked
561 *
562 * Returns true if the endpoint has interrupt transfer type and OUT direction,
563 * otherwise it returns false.
564 */
565 static inline int usb_endpoint_is_int_out(
566 const struct usb_endpoint_descriptor *epd)
567 {
568 return usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd);
569 }
570
571 /**
572 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
573 * @epd: endpoint to be checked
574 *
575 * Returns true if the endpoint has isochronous transfer type and IN direction,
576 * otherwise it returns false.
577 */
578 static inline int usb_endpoint_is_isoc_in(
579 const struct usb_endpoint_descriptor *epd)
580 {
581 return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd);
582 }
583
584 /**
585 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
586 * @epd: endpoint to be checked
587 *
588 * Returns true if the endpoint has isochronous transfer type and OUT direction,
589 * otherwise it returns false.
590 */
591 static inline int usb_endpoint_is_isoc_out(
592 const struct usb_endpoint_descriptor *epd)
593 {
594 return usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd);
595 }
596
597 /**
598 * usb_endpoint_maxp - get endpoint's max packet size
599 * @epd: endpoint to be checked
600 *
601 * Returns @epd's max packet
602 */
603 static inline int usb_endpoint_maxp(const struct usb_endpoint_descriptor *epd)
604 {
605 return __le16_to_cpu(epd->wMaxPacketSize);
606 }
607
608 static inline int usb_endpoint_interrupt_type(
609 const struct usb_endpoint_descriptor *epd)
610 {
611 return epd->bmAttributes & USB_ENDPOINT_INTRTYPE;
612 }
613
614 /*-------------------------------------------------------------------------*/
615
616 /* USB_DT_SS_ENDPOINT_COMP: SuperSpeed Endpoint Companion descriptor */
617 struct usb_ss_ep_comp_descriptor {
618 __u8 bLength;
619 __u8 bDescriptorType;
620
621 __u8 bMaxBurst;
622 __u8 bmAttributes;
623 __le16 wBytesPerInterval;
624 } __attribute__ ((packed));
625
626 #define USB_DT_SS_EP_COMP_SIZE 6
627
628 /* Bits 4:0 of bmAttributes if this is a bulk endpoint */
629 static inline int
630 usb_ss_max_streams(const struct usb_ss_ep_comp_descriptor *comp)
631 {
632 int max_streams;
633
634 if (!comp)
635 return 0;
636
637 max_streams = comp->bmAttributes & 0x1f;
638
639 if (!max_streams)
640 return 0;
641
642 max_streams = 1 << max_streams;
643
644 return max_streams;
645 }
646
647 /* Bits 1:0 of bmAttributes if this is an isoc endpoint */
648 #define USB_SS_MULT(p) (1 + ((p) & 0x3))
649
650 /*-------------------------------------------------------------------------*/
651
652 /* USB_DT_DEVICE_QUALIFIER: Device Qualifier descriptor */
653 struct usb_qualifier_descriptor {
654 __u8 bLength;
655 __u8 bDescriptorType;
656
657 __le16 bcdUSB;
658 __u8 bDeviceClass;
659 __u8 bDeviceSubClass;
660 __u8 bDeviceProtocol;
661 __u8 bMaxPacketSize0;
662 __u8 bNumConfigurations;
663 __u8 bRESERVED;
664 } __attribute__ ((packed));
665
666
667 /*-------------------------------------------------------------------------*/
668
669 /* USB_DT_OTG (from OTG 1.0a supplement) */
670 struct usb_otg_descriptor {
671 __u8 bLength;
672 __u8 bDescriptorType;
673
674 __u8 bmAttributes; /* support for HNP, SRP, etc */
675 } __attribute__ ((packed));
676
677 /* USB_DT_OTG (from OTG 2.0 supplement) */
678 struct usb_otg20_descriptor {
679 __u8 bLength;
680 __u8 bDescriptorType;
681
682 __u8 bmAttributes; /* support for HNP, SRP and ADP, etc */
683 __le16 bcdOTG; /* OTG and EH supplement release number
684 * in binary-coded decimal(i.e. 2.0 is 0200H)
685 */
686 } __attribute__ ((packed));
687
688 /* from usb_otg_descriptor.bmAttributes */
689 #define USB_OTG_SRP (1 << 0)
690 #define USB_OTG_HNP (1 << 1) /* swap host/device roles */
691 #define USB_OTG_ADP (1 << 2) /* support ADP */
692
693 /*-------------------------------------------------------------------------*/
694
695 /* USB_DT_DEBUG: for special highspeed devices, replacing serial console */
696 struct usb_debug_descriptor {
697 __u8 bLength;
698 __u8 bDescriptorType;
699
700 /* bulk endpoints with 8 byte maxpacket */
701 __u8 bDebugInEndpoint;
702 __u8 bDebugOutEndpoint;
703 } __attribute__((packed));
704
705 /*-------------------------------------------------------------------------*/
706
707 /* USB_DT_INTERFACE_ASSOCIATION: groups interfaces */
708 struct usb_interface_assoc_descriptor {
709 __u8 bLength;
710 __u8 bDescriptorType;
711
712 __u8 bFirstInterface;
713 __u8 bInterfaceCount;
714 __u8 bFunctionClass;
715 __u8 bFunctionSubClass;
716 __u8 bFunctionProtocol;
717 __u8 iFunction;
718 } __attribute__ ((packed));
719
720
721 /*-------------------------------------------------------------------------*/
722
723 /* USB_DT_SECURITY: group of wireless security descriptors, including
724 * encryption types available for setting up a CC/association.
725 */
726 struct usb_security_descriptor {
727 __u8 bLength;
728 __u8 bDescriptorType;
729
730 __le16 wTotalLength;
731 __u8 bNumEncryptionTypes;
732 } __attribute__((packed));
733
734 /*-------------------------------------------------------------------------*/
735
736 /* USB_DT_KEY: used with {GET,SET}_SECURITY_DATA; only public keys
737 * may be retrieved.
738 */
739 struct usb_key_descriptor {
740 __u8 bLength;
741 __u8 bDescriptorType;
742
743 __u8 tTKID[3];
744 __u8 bReserved;
745 __u8 bKeyData[0];
746 } __attribute__((packed));
747
748 /*-------------------------------------------------------------------------*/
749
750 /* USB_DT_ENCRYPTION_TYPE: bundled in DT_SECURITY groups */
751 struct usb_encryption_descriptor {
752 __u8 bLength;
753 __u8 bDescriptorType;
754
755 __u8 bEncryptionType;
756 #define USB_ENC_TYPE_UNSECURE 0
757 #define USB_ENC_TYPE_WIRED 1 /* non-wireless mode */
758 #define USB_ENC_TYPE_CCM_1 2 /* aes128/cbc session */
759 #define USB_ENC_TYPE_RSA_1 3 /* rsa3072/sha1 auth */
760 __u8 bEncryptionValue; /* use in SET_ENCRYPTION */
761 __u8 bAuthKeyIndex;
762 } __attribute__((packed));
763
764
765 /*-------------------------------------------------------------------------*/
766
767 /* USB_DT_BOS: group of device-level capabilities */
768 struct usb_bos_descriptor {
769 __u8 bLength;
770 __u8 bDescriptorType;
771
772 __le16 wTotalLength;
773 __u8 bNumDeviceCaps;
774 } __attribute__((packed));
775
776 #define USB_DT_BOS_SIZE 5
777 /*-------------------------------------------------------------------------*/
778
779 /* USB_DT_DEVICE_CAPABILITY: grouped with BOS */
780 struct usb_dev_cap_header {
781 __u8 bLength;
782 __u8 bDescriptorType;
783 __u8 bDevCapabilityType;
784 } __attribute__((packed));
785
786 #define USB_CAP_TYPE_WIRELESS_USB 1
787
788 struct usb_wireless_cap_descriptor { /* Ultra Wide Band */
789 __u8 bLength;
790 __u8 bDescriptorType;
791 __u8 bDevCapabilityType;
792
793 __u8 bmAttributes;
794 #define USB_WIRELESS_P2P_DRD (1 << 1)
795 #define USB_WIRELESS_BEACON_MASK (3 << 2)
796 #define USB_WIRELESS_BEACON_SELF (1 << 2)
797 #define USB_WIRELESS_BEACON_DIRECTED (2 << 2)
798 #define USB_WIRELESS_BEACON_NONE (3 << 2)
799 __le16 wPHYRates; /* bit rates, Mbps */
800 #define USB_WIRELESS_PHY_53 (1 << 0) /* always set */
801 #define USB_WIRELESS_PHY_80 (1 << 1)
802 #define USB_WIRELESS_PHY_107 (1 << 2) /* always set */
803 #define USB_WIRELESS_PHY_160 (1 << 3)
804 #define USB_WIRELESS_PHY_200 (1 << 4) /* always set */
805 #define USB_WIRELESS_PHY_320 (1 << 5)
806 #define USB_WIRELESS_PHY_400 (1 << 6)
807 #define USB_WIRELESS_PHY_480 (1 << 7)
808 __u8 bmTFITXPowerInfo; /* TFI power levels */
809 __u8 bmFFITXPowerInfo; /* FFI power levels */
810 __le16 bmBandGroup;
811 __u8 bReserved;
812 } __attribute__((packed));
813
814 /* USB 2.0 Extension descriptor */
815 #define USB_CAP_TYPE_EXT 2
816
817 struct usb_ext_cap_descriptor { /* Link Power Management */
818 __u8 bLength;
819 __u8 bDescriptorType;
820 __u8 bDevCapabilityType;
821 __le32 bmAttributes;
822 #define USB_LPM_SUPPORT (1 << 1) /* supports LPM */
823 #define USB_BESL_SUPPORT (1 << 2) /* supports BESL */
824 #define USB_BESL_BASELINE_VALID (1 << 3) /* Baseline BESL valid*/
825 #define USB_BESL_DEEP_VALID (1 << 4) /* Deep BESL valid */
826 #define USB_GET_BESL_BASELINE(p) (((p) & (0xf << 8)) >> 8)
827 #define USB_GET_BESL_DEEP(p) (((p) & (0xf << 12)) >> 12)
828 } __attribute__((packed));
829
830 #define USB_DT_USB_EXT_CAP_SIZE 7
831
832 /*
833 * SuperSpeed USB Capability descriptor: Defines the set of SuperSpeed USB
834 * specific device level capabilities
835 */
836 #define USB_SS_CAP_TYPE 3
837 struct usb_ss_cap_descriptor { /* Link Power Management */
838 __u8 bLength;
839 __u8 bDescriptorType;
840 __u8 bDevCapabilityType;
841 __u8 bmAttributes;
842 #define USB_LTM_SUPPORT (1 << 1) /* supports LTM */
843 __le16 wSpeedSupported;
844 #define USB_LOW_SPEED_OPERATION (1) /* Low speed operation */
845 #define USB_FULL_SPEED_OPERATION (1 << 1) /* Full speed operation */
846 #define USB_HIGH_SPEED_OPERATION (1 << 2) /* High speed operation */
847 #define USB_5GBPS_OPERATION (1 << 3) /* Operation at 5Gbps */
848 __u8 bFunctionalitySupport;
849 __u8 bU1devExitLat;
850 __le16 bU2DevExitLat;
851 } __attribute__((packed));
852
853 #define USB_DT_USB_SS_CAP_SIZE 10
854
855 /*
856 * Container ID Capability descriptor: Defines the instance unique ID used to
857 * identify the instance across all operating modes
858 */
859 #define CONTAINER_ID_TYPE 4
860 struct usb_ss_container_id_descriptor {
861 __u8 bLength;
862 __u8 bDescriptorType;
863 __u8 bDevCapabilityType;
864 __u8 bReserved;
865 __u8 ContainerID[16]; /* 128-bit number */
866 } __attribute__((packed));
867
868 #define USB_DT_USB_SS_CONTN_ID_SIZE 20
869 /*-------------------------------------------------------------------------*/
870
871 /* USB_DT_WIRELESS_ENDPOINT_COMP: companion descriptor associated with
872 * each endpoint descriptor for a wireless device
873 */
874 struct usb_wireless_ep_comp_descriptor {
875 __u8 bLength;
876 __u8 bDescriptorType;
877
878 __u8 bMaxBurst;
879 __u8 bMaxSequence;
880 __le16 wMaxStreamDelay;
881 __le16 wOverTheAirPacketSize;
882 __u8 bOverTheAirInterval;
883 __u8 bmCompAttributes;
884 #define USB_ENDPOINT_SWITCH_MASK 0x03 /* in bmCompAttributes */
885 #define USB_ENDPOINT_SWITCH_NO 0
886 #define USB_ENDPOINT_SWITCH_SWITCH 1
887 #define USB_ENDPOINT_SWITCH_SCALE 2
888 } __attribute__((packed));
889
890 /*-------------------------------------------------------------------------*/
891
892 /* USB_REQ_SET_HANDSHAKE is a four-way handshake used between a wireless
893 * host and a device for connection set up, mutual authentication, and
894 * exchanging short lived session keys. The handshake depends on a CC.
895 */
896 struct usb_handshake {
897 __u8 bMessageNumber;
898 __u8 bStatus;
899 __u8 tTKID[3];
900 __u8 bReserved;
901 __u8 CDID[16];
902 __u8 nonce[16];
903 __u8 MIC[8];
904 } __attribute__((packed));
905
906 /*-------------------------------------------------------------------------*/
907
908 /* USB_REQ_SET_CONNECTION modifies or revokes a connection context (CC).
909 * A CC may also be set up using non-wireless secure channels (including
910 * wired USB!), and some devices may support CCs with multiple hosts.
911 */
912 struct usb_connection_context {
913 __u8 CHID[16]; /* persistent host id */
914 __u8 CDID[16]; /* device id (unique w/in host context) */
915 __u8 CK[16]; /* connection key */
916 } __attribute__((packed));
917
918 /*-------------------------------------------------------------------------*/
919
920 /* USB 2.0 defines three speeds, here's how Linux identifies them */
921
922 enum usb_device_speed {
923 USB_SPEED_UNKNOWN = 0, /* enumerating */
924 USB_SPEED_LOW, USB_SPEED_FULL, /* usb 1.1 */
925 USB_SPEED_HIGH, /* usb 2.0 */
926 USB_SPEED_WIRELESS, /* wireless (usb 2.5) */
927 USB_SPEED_SUPER, /* usb 3.0 */
928 };
929
930
931 enum usb_device_state {
932 /* NOTATTACHED isn't in the USB spec, and this state acts
933 * the same as ATTACHED ... but it's clearer this way.
934 */
935 USB_STATE_NOTATTACHED = 0,
936
937 /* chapter 9 and authentication (wireless) device states */
938 USB_STATE_ATTACHED,
939 USB_STATE_POWERED, /* wired */
940 USB_STATE_RECONNECTING, /* auth */
941 USB_STATE_UNAUTHENTICATED, /* auth */
942 USB_STATE_DEFAULT, /* limited function */
943 USB_STATE_ADDRESS,
944 USB_STATE_CONFIGURED, /* most functions */
945
946 USB_STATE_SUSPENDED
947
948 /* NOTE: there are actually four different SUSPENDED
949 * states, returning to POWERED, DEFAULT, ADDRESS, or
950 * CONFIGURED respectively when SOF tokens flow again.
951 * At this level there's no difference between L1 and L2
952 * suspend states. (L2 being original USB 1.1 suspend.)
953 */
954 };
955
956 enum usb3_link_state {
957 USB3_LPM_U0 = 0,
958 USB3_LPM_U1,
959 USB3_LPM_U2,
960 USB3_LPM_U3
961 };
962
963 /*
964 * A U1 timeout of 0x0 means the parent hub will reject any transitions to U1.
965 * 0xff means the parent hub will accept transitions to U1, but will not
966 * initiate a transition.
967 *
968 * A U1 timeout of 0x1 to 0x7F also causes the hub to initiate a transition to
969 * U1 after that many microseconds. Timeouts of 0x80 to 0xFE are reserved
970 * values.
971 *
972 * A U2 timeout of 0x0 means the parent hub will reject any transitions to U2.
973 * 0xff means the parent hub will accept transitions to U2, but will not
974 * initiate a transition.
975 *
976 * A U2 timeout of 0x1 to 0xFE also causes the hub to initiate a transition to
977 * U2 after N*256 microseconds. Therefore a U2 timeout value of 0x1 means a U2
978 * idle timer of 256 microseconds, 0x2 means 512 microseconds, 0xFE means
979 * 65.024ms.
980 */
981 #define USB3_LPM_DISABLED 0x0
982 #define USB3_LPM_U1_MAX_TIMEOUT 0x7F
983 #define USB3_LPM_U2_MAX_TIMEOUT 0xFE
984 #define USB3_LPM_DEVICE_INITIATED 0xFF
985
986 struct usb_set_sel_req {
987 __u8 u1_sel;
988 __u8 u1_pel;
989 __le16 u2_sel;
990 __le16 u2_pel;
991 } __attribute__ ((packed));
992
993 /*
994 * The Set System Exit Latency control transfer provides one byte each for
995 * U1 SEL and U1 PEL, so the max exit latency is 0xFF. U2 SEL and U2 PEL each
996 * are two bytes long.
997 */
998 #define USB3_LPM_MAX_U1_SEL_PEL 0xFF
999 #define USB3_LPM_MAX_U2_SEL_PEL 0xFFFF
1000
1001 /*-------------------------------------------------------------------------*/
1002
1003 /*
1004 * As per USB compliance update, a device that is actively drawing
1005 * more than 100mA from USB must report itself as bus-powered in
1006 * the GetStatus(DEVICE) call.
1007 * http://compliance.usb.org/index.asp?UpdateFile=Electrical&Format=Standard#34
1008 */
1009 #define USB_SELF_POWER_VBUS_MAX_DRAW 100
1010
1011 #endif /* _UAPI__LINUX_USB_CH9_H */ |
Here is an explanation of a rule violation arisen while checking your driver against a corresponding kernel.
Note that it may be false positive, i.e. there isn't a real error indeed. Please analyze a given error trace and related source code to understand whether there is an error in your driver.
Error trace column contains a path on which the given rule is violated. You can expand/collapse some entity classes by clicking on corresponding checkboxes in a main menu or in an advanced Others menu. Also you can expand/collapse each particular entity by clicking on +/-. In hovering on some entities you can see some tips. Also the error trace is bound with related source code. Line numbers may be shown as links on the left. You can click on them to open corresponding lines in source code.
Source code column contains a content of files related with the error trace. There is source code of your driver (note that there are some LDV modifications at the end), kernel headers and rule model. Tabs show a currently opened file and other available files. In hovering on them you can see full file names. On clicking a corresponding file content will be shown.
Kernel | Module | Rule | Verifier | Verdict | Status | Timestamp | Bug report |
linux-4.3-rc1.tar.xz | drivers/staging/media/lirc/lirc_imon.ko | 32_7a | CPAchecker | Bug | Fixed | 2015-11-14 21:22:22 | L0214 |
Comment
reported: 14 Nov 2015
[Home]